NOISE CLUSTERING AS A METHOD FOR ASSESSING THE FUNCTION OF PERMANENT VASCULAR ACCESS IN PATIENTS DURING HEMODIALYSIS
https://doi.org/10.34822/2304-9448-2022-1-25-30
Abstract
The study aims to develop an algorithm for assessing spectrographic features of arteriovenous fistula dysfunction for hemodialysis. Materials and methods. Forty-four patients with native radiocephalic fistula formed in the distal third of the forearm participated in the research. Using electronic stethoscope, the noise of arteriovenous fistula was recorded in all patients. 653 spectrograms were analyzed with the method of evaluating entropy and complexity value. The algorithm of Wishart clustering was applied to detect consistency. Results. The algorithm developed for audiograms analysis and based on evaluation of “chaotic” and “complex” sound makes it possible to divide arteriovenous fistula noise into three clusters. Each cluster complies with its possibility of dysfunction. The algorithm may be applied in developing individual mobile devices to monitor constantly the condition of arteriovenous fistula.
About the Authors
P. F. KravtsovRussian Federation
Candidate of Sciences (Medicine), Cardiovascular Surgeon
E-mail: kravtsovpf@mail.ru
E. N. Nikolaev
Russian Federation
Postgraduate
E-mail: jeka.nickolaev@yandex.ru
K. V. Mazayshvili
Russian Federation
Doctor of Sciences (Medicine), Professor
E-mail: nmspl@mail.ru
V. A. Gromov
Russian Federation
Doctor of Science (Physics and Mathematics), Professor
E-mail: vgromov@hse.ru
E. L. Zvorykina
Russian Federation
Student
E-mail: y.zvorykina@gmail.com
Yu. N. Beschastnov
Russian Federation
Research Assistant
E-mail: y.beschastnov@mail.ru
References
1. Okpechi I. G., Nthite T., Swanepoel C. R. Health-Related Quality of Life in Patients on Hemodialysis and Peritoneal Dialysis // Saudi J Kidney Dis Transpl. 2013. Vol. 24, Is. 3. P. 519–526. DOI 10.4103/1319-2442.111036.
2. Himmelfarb J., Vanholder R., Mehrotra R., Tonelli M. The Current and Future Landscape of Dialysis // Nat Rev Nephrol. 2020. Vol. 16, Is. 10. P. 573–585. DOI 10.1038/s41581-020-0315-4.
3. Farouk S. S., Fiaccadori E., Cravedi P., Campbell K. N. COVID-19 and the Kidney: What We Think We Know so Far and What We Don’t // J Nephrol. 2020. Vol. 33, Is. 6. P. 1213–1218. DOI 10.1007/s40620-020- 00789-y.
4. Chan L., Chaudhary K., Saha A., et al. Acute Kidney Injury in Hospitalized Patients with COVID-19 // medRxiv. 2020. DOI 10.1101/2020.05.04.20090944.
5. Hirsch J. S., Ng J. H., Ross D. W. et al. Acute Kidney Injury in Patients Hospitalized with COVID-19 // Kidney Int. 2020. Vol. 98, Is. 1. P. 209–218. DOI 10.1016/j.kint.2020.05.006.
6. Malberti F., Pecchini P., Marchi G., Foramitti M. When a Nephrology Ward Becomes a COVID-19 Ward: The Cremona Experience // J Nephrol. 2020. Vol. 33, Is. 4. P. 625–628. DOI 10.1007/s40620-020-00743-y.
7. Alberici F., Delbarba E., Manenti C. et al. A Report from the Brescia Renal COVID Task Force on the Clinical Characteristics and Short-Term Outcome of Hemodialysis Patients with SARS-CoV-2 Infection // Kidney Int. 2020. Vol. 98, Is. 1. P. 20–26. DOI 10.1016/j.kint.2020.04.030.
8. Pecoits-Filho R., Okpechi I. G., Donner J.-A. et al. Capturing and Monitoring Global Differences in Untreated and Treated End-Stage Kidney Disease, Kidney Replacement Therapy Modality, and Outcomes // Kidney Int Suppl. 2020. Vol. 10, Is. 1. P. e3–e9. DOI 10.1016/j.kisu.2019.11.001.
9. Bello A. K., Levin A., Tonelli M. et al. Global Kidney Health Atlas: A Report by the International Society of Nephrology on the Current State of Organization and Structures for Kidney Care across the Globe. Brussels, Belgium : International Society of Nephrology, 2017. 182 p. URL: https://www.kidneycareuk.org/document /52/ISN_Global_kidney_health_atlas.pdf
10. Liyanage T., Ninomiya T., Jha V. et al. Worldwide Access to Treatment for End-Stage Kidney Disease: A Systematic Review // The Lancet. 2015. Vol. 385, Is. 9981. P. 1975–1982. DOI 10.1016/S0140- 6736(14)61601-9.
11. Калинин Р. Е., Сучков И. А., Егоров А. А. и др. Примеры нестандартных реконструкций сосудистого доступа у диализных пациентов // Новости хирургии. 2017. № 1. С. 87–92. DOI 10.18484/2305-0047.2017.1.87.
12. Gottmann U., Sadick M., Kleinhuber K. et al. Central Vein Stenosis in a Dialysis Patient: A Case Report // J Med Case Rep. 2012. Vol. 6. P. 189. DOI 10.1186/1752-1947-6-189.
13. Brahmbhatt A., Remuzzi A., Franzoni M., Misra S. The Molecular Mechanisms of Hemodialysis Vascular Access Failure // Kidney Int. 2016. Vol. 89, Is. 2. P. 303–316. DOI 10.1016/j.kint.2015.12.019.
14. Ota K., Nishiura Y., Ishihara S. et al. Evaluation of Hemodialysis Arteriovenous Bruit by Deep Learning // Sensors (Basel). 2020. Vol. 20, Is. 17. P. 4852. DOI 10.3390/s20174852.
15. Salman L., Beathard G. Interventional Nephrology: Physical Examination as a Tool for Surveillance for the Hemodialysis Arteriovenous Access // Clin J Am Soc Nephrol. 2013. Vol. 8, Is. 7. P. 1220–1227. DOI 10.2215/CJN.00740113.
16. Kokorozashi N. Analysis of the Shunt Sound Frequency Characteristic Changes Associated with Shunt Stenosis // Jpn Soc Dial Ther J. 2010. Vol. 3. P. 287–295. (In Japanese).
17. Todo A., Kadonaka T., Yoshioka M. et al. Frequency Analysis of Shunt Sounds in the Arteriovenous Fistula on Hemodialysis Patients // Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems, Kobe, Japan, 20–24 November, 2012. DOI 10.1109/SCIS-ISIS.2012.6505044.
18. Wang H.-Y., Wu C.-H., Chen C.-Y., Lin B.-S. Novel Noninvasive Approach for Detecting Arteriovenous Fistula Stenosis // IEEE Trans Biomed Eng. 2014. Vol. 61, Is. 6. P. 1851–1857. DOI 10.1109/ TBME.2014.2308906.
19. Gromov V. A., Borisenko E. A. Predictive Clustering on Non-Successive Observations for Multi-Step Ahead Chaotic Time Series Prediction // Neural Computing and Applications. 2015. Vol. 26, № 8. P. 1827–1838.
20. Rosso O. A., Carpi L. C., Saco P. M., Ravetti M. G. Causality and the Entropy–Complexity Plane: Robustness and Missing Ordinal Patterns // Physica A: Statistical Mechanics and its Applications. 2012. Vol. 391, Is. 1–2. P. 42–55.
21. Bandt C., Pompe B. Permutation Entropy: A Natural Complexity Measure for Time Series // Physical Review Letters. 2002. Vol. 88, Is. 17. P. 174102. DOI 10.1103/PhysRevLett.88.174102.
22. Корытцев В. К., Мельников М. А., Кравцов П. Ф. и др. Случай успешного лечения хронической сердечной недостаточности путем снижения объемного кровотока по артериовенозной фистуле спиральным корректором: клиническое наблюдение // Нефрология и диализ. 2016. Т. 18, № 1. С. 76–79.
23. Николаев Е. Н., Мазайшвили К. В., Лобанов Д. С. и др. Современное состояние проблемы тромбоза сосудистого доступа у больных на гемодиализе // Вестник СурГУ. Медицина. 2019. № 3. С. 8–14.
24. Liao M.-T., Chen M.-K., Hsieh M.-Y. et al. Drug-Coated Balloon versus Conventional Balloon Angioplasty of Hemodialysis Arteriovenous Fistula or Graft: A Systematic Review and Meta-Analysis of Randomized Controlled Trials // PLoS One. 2020. Vol. 15, Is. 4. P. e0231463. DOI 10.1371/journal.pone.0231463.eCollection2020.
Review
For citations:
Kravtsov P.F., Nikolaev E.N., Mazayshvili K.V., Gromov V.A., Zvorykina E.L., Beschastnov Yu.N. NOISE CLUSTERING AS A METHOD FOR ASSESSING THE FUNCTION OF PERMANENT VASCULAR ACCESS IN PATIENTS DURING HEMODIALYSIS. Vestnik SurGU. Meditsina. 2022;(1 (51)):25-30. (In Russ.) https://doi.org/10.34822/2304-9448-2022-1-25-30