SEQUENCING METHOD AND ALGORITHM FOR ANALYZING METHYLATION PROFILES BASED ON NGS DATA TO IDENTIFY UNIPARENTAL DISOMY
https://doi.org/10.35266/2949-3447-2025-1-9
Abstract
Uniparental disomy is an anomaly where both homologous chromosomes are inherited from the same parent. The pathological effects of this anomaly are associated with imprinting disorders and loss of heterozygosity. Traditional diagnostic methods, such as simple sequence repeats analysis and chromosomal microarray analysis, have limitations in diagnosing the anomaly in single-parent households and mosaic cases. The aim of this study is to evaluate the potential effectiveness of a diagnostic method for uniparental disomy and imprinting disorders based on DNA methylation profiling using next-generation sequencing data. In particular, a genomic DNA bank sample preparation was modified using the methyl-dependent endonuclease GlaI in combination with the restriction endonuclease Bst2UI to improve its informativeness. In addition, bioinformatic analysis algorithm was developed. The method was tested on a clinical case of maternal reciprocal translocation (3;19)(q12;q13.3) with suspected segmental uniparental disomy in the proband. Modification of the bank sample preparation protocol provided the coverage of approximately 5 million methylation sites. Bioinformatic analysis included definition of methylation status in clinically significant imprinting control regions and the search for regions of homozygosity. The method enabled the coverage of 2/3 of potential imprinting control regions. No signs of uniparental disomy were found in the proband, which is consistent with the results of chromosomal microarray analysis. Although the approach represents a cost-effective alternative to genomewide bisulfite sequencing, problems with normalizing the relative methylation levels remain. Further validation of biologically developed method on confirmed uniparental disomy cases is planned to definitively assess itssuitability for identifying anomalies.
About the Authors
P. A. SuchkoRussian Federation
Master`s Degree Student
D. A. Nekrasova
Russian Federation
Bioinformatician
M. Yu. Donnikov
Russian Federation
Laboratory Geneticist, Candidate of Sciences (Medicine), Leading Researcher
O. S. Glotov
Russian Federation
Doctor of Sciences (Biology), Head of the Department of Experimental Medical Virology, Molecular Genetics and Biobanking
L. G. Danilov
Russian Federation
Junior Researcher
References
1. Del Gaudio D., Shinawi M., Astbury C. et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG) // Genetics in Medicine. 2020, Vol. 22, no. 7. P. 1133–1141. https://doi.org/10.103 8/s41436-020-0782-9.
2. Liehr T. 2025. Cases with uniparental disomy. URL: https://cs-tl.de/DB/CA/UPD/0-Start.html (дата обращения: 13.01.2025).
3. Benn P. Uniparental disomy: Origin, frequency, and clinical significance // Prenatal Diagnosis. 2021. Vol. 41, no. 5. P. 564–572. https://doi.org/10.1002/pd.5837.
4. Eggermann T., Soellner L., Buiting K. et al. Mosaicism and uniparental disomy in prenatal diagnosis // Trends in Molecular Medicine. 2015. Vol. 21, no. 2. P. 77–87. https://doi.org/10.1016/j.molmed.2014.11.010.
5. Chien S.-C., Chen C.-P., Liou J.-D. Prenatal diagnosis and genetic counseling of uniparental disomy // Taiwanese Journal of Obstetrics and Gynecology. 2022. Vol. 61, no. 2. P. 210–215. https://doi.org/10.1016/j.tjog.2022.02.006.
6. Nakka P., Smith S. P., O’Donnell-Luria A. H. et al. Characterization of Prevalence and Health Consequences of Uniparental Disomy in Four Million Individuals from the General Population // The American Journal of Human Genetics. 2019. Vol. 105, no. 5. P. 921–932. https://doi.org/10.1016/j.ajhg.2019.09.016.
7. Сhen Q., Chen Y., Shi L. et al. Uniparental disomy: expanding the clinical and molecular phenotypes of whole chromosomes // Frontiers in Genetics. 2023. Vol. 14. https://doi.org/10.3389/fgene.2023.1232059.
8. Liehr T. Uniparental disomy (UPD) in clinical genetics: A guide for clinicians and patients. Springer, 2014. 192 p.
9. Вашукова Е. С., Тарасенко О. А., Козюлина П. Ю. и др. Оценка эффективности полногеномного неинвазивного пренатального тестирования для выявления редких хромосомных аномалий на основе опыта ФГБНУ «НИИ АГиР им. Д. О. Отта» // Медицинская генетика. 2022. Т. 21, № 11. С. 19–22.
10. Gonzales P. R., Andersen E. F., Brown T. R. et al. Interpretation and reporting of large regions of homozygosity and suspected consanguinity/uniparental disomy, 2021 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG) // Genetics of Medicine. 2022. Vol. 24, no. 2. P. 255–261. https://doi.org/10.1016/j.gim.2021.10.004.
11. Scuffins J., Keller-Ramey J., Dyer L. et al. Uniparental disomy in a population of 32,067 clinical exome trios // Genetics of Medicine. 2021. Vol. 23, no. 6. P. 1101–1107. https://doi.org/10.1038/s41436-020-01092-8.
12. Саженова Е. А., Лебедев И. Н. Стандарты молекулярно-генетической ДНК-диагностики болезней геномного импринтинга на примере синдромов Прадера-Вилли и Энгельмана // Медицинская генетика. 2015. Т. 14, № 9. С. 3–10.
13. Yamada M., Okuno H., Okamoto N. et al. Diagnosis of Prader-Willi syndrome and Angelman syndrome by targeted nanopore longread sequencing // European Journal of Medical Genetics. 2023. Vol. 66, no. 2. https://doi.org/10.1016/j.ejmg.2022.104690.
14. Holthöfer L., Diederich S., Haug V. et al. A case of an Angelmansyndrome caused by an intragenic duplication of UBE3A uncovered by adaptive nanopore sequencing // Clinical Epigenetics. 2024. Vol.16. https://doi.org/10.1186/s13148-024-01711-0.
15. Abdurashitov M. A., Tomilov V. N., Gonchar D. A. et al. Comparative analysis of RCGY sites methylation in three human cell lines // Epigenetic DNA diagnostics. 2019. https://doi.org/10.26213/ SE.2019.76.40116.
16. Mora-Márquez F., García-Olivares V., Emerson B. C. et al. ddRADseqTools: a software package for in silico simulation and testing of double-digest RADseq experiments // Molecular Ecology Resources. 2017. Vol. 17, no. 2. P. 230–246. https://doi.org/10.1111/1755-0998.12550.
17. Putri G. H., Anders S., Pyl P. T. et al. Analysing high-throughput sequencing data in Python with HTSeq 2.0 // Bioinformatics. 2022. Vol. 38, no. 10. P. 2943–2945. https://doi.org/10.1093/bioinformatics/btac166.
18. A resource for integrated genetical genomic analysis of the human Imprint Control Regions (ICRs). URL: https://humanicr.org/ (дата обращения: 15.01.2025).
19. Radtke M., Moch J., Hentschel, J. et al. altAFplotter: a web app for reliable UPD detection in NGS diagnostics // BMC Bioinformatics. 2024. Vol. 25. https://doi.org/10.1186/s12859-024-05922-3.
20. Jima D. D., Skaar D. A., Planchart A. et al. Genomic map of candidate human imprint control regions: the imprintome // Epigenetics. 2022. Vol. 17, no. 13. P. 1920–1943. https://doi.org/10.1080/15592294.2022.2091815.
Review
For citations:
Suchko P.A., Nekrasova D.A., Donnikov M.Yu., Glotov O.S., Danilov L.G. SEQUENCING METHOD AND ALGORITHM FOR ANALYZING METHYLATION PROFILES BASED ON NGS DATA TO IDENTIFY UNIPARENTAL DISOMY. Vestnik SurGU. Meditsina. 2025;18(1):73-80. (In Russ.) https://doi.org/10.35266/2949-3447-2025-1-9