Preview

Vestnik SurGU. Meditsina

Advanced search

EXTRACELLULAR TRAPS: A NEW FUNCTION OF NEUTROPHILS AND THEIR ROLE IN INFLAMMATION AND HEMOSTASIS

https://doi.org/10.35266/2949-3447-2024-4-9

Abstract

The aim of the article is to review the scientific literature in PubMed and CyberLeninka databases with a search depth of 10 years using the following keywords: neutrophil extracellular traps, neutrophil granulocytes, platelets, inflammasome, coronavirus infection. Phagocytic activity of neutrophils, mechanisms of extracellular trap formation, their functions and roles in inflammation, connections with pathogenesis of hemostasis, roles of neutrophil traps in physiology, pathogenesis of diseases, infectious process in COVID-19 are discussed. The COVID-19 pandemic, along with new scientific evidence, has prompted a reevaluation of the link between inflammation and immune response, hemostasis and thrombosis. This reevaluation has highlighted neutrophils and their extracellular traps as crucial cells in this connection.

About the Authors

T. E. Kisina
North State Medical University, Arkhangelsk
Russian Federation

Docent



N. A. Vorobyeva
North State Medical University, Arkhangelsk
Russian Federation

Head of the Department



References

1. Солодовникова О. Н., Молочный В. П. «Кислородный взрыв» нейтрофильных лейкоцитов в патогенезе воспалительной реакции при гнойных инфекциях у детей // Дальневосточный медицинский журнал. 2012. № 1. С. 118–122.

2. Tecchio C., Micheletti A., Cassatella M. A. Neutrophil-derived cytokines: facts beyond expression // Frontiers in Immunology. 2014. Vol. 21, no. 5. P. 508. https://doi.org/10.3389/fimmu.2014.00508.

3. Беляева А. С., Ванько Л. В., Матвеева Н. К. и др. Нейтрофильные гранулоциты как регуляторы иммунитета // Иммунология. 2016. Т. 37, № 2. С. 129–133.

4. Masucci M. T., Minopoli M., Del Vecchio S. et al. The emerging role of Neutrophil Extracellular Traps (NETs) in tumor progression and metastasis front // Frontiers in Immunology. 2020. No. 11. P. 1749. https://doi.org/10.3389/fimmu.2020.01749.

5. Carty M., Guy C., Bowie A. G. Detection of viral infections by innate immunity // Biochemical Pharmacology. 2021. No. 183. P. 114316. https://doi.org/10.1016/j.bcp.2020.114316.

6. Гаранина Е. Е., Мартынова Е. В., Иванов К. Я. и др. Инфламмасомы: роль в патогенезе заболеваний и терапевтический потенциал // Ученые записки Казанского университета. Сер.: Естественные науки. 2020. Т. 162, № 1. С. 80–111.

7. Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria // Science. 2004. Vol. 303, no. 5663. P. 1532–1535. https://doi.org/10.1126/science.1092385.

8. Воробьева Н. В. Нейтрофильные внеклеточные ловушки: новые аспекты // Вестник Московского университета. Сер.: Биология. 2020. Т. 75, № 4. С. 210–225.

9. Liu Y., Lightfoot Y. L., Seto N. et al. Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupus // Journal of Clinical Investigation Insight. 2018. Vol. 3, no. 23. P. e124729. https://doi.org/10.1172/ jci.insight.124729.

10. Mutua V., Gershwin L. J. A review of Neutrophil Extracellular Traps (NETs) in disease: Potential anti-NETs therapeutics // Clinical Reviews Allergy & Immunology. 2021. Vol. 61, no. 2. P. 194–211. https://doi.org/10.1007/s12016-020-08804-7.

11. Becker R. C. COVID-19 update: Covid-19-associated coagulopathy // Journal of Thrombosis and Thrombolysis. 2020. Vol. 50, no. 1. P. 54–67. https://doi.org/10.1007/s11239-020-02134-3.

12. Colling M. E., Kanthi Y. COVID-19-associated coagulopathy: An exploration of mechanisms // Vascular Medicine. 2020. Vol. 25, no. 5. P. 471–478. https://doi.org/10.1177/1358863X20932640.

13. Sabbatini M., Magnelli V., Renò F. NETosis in wound healing: When enough is enough // Cells. 2021. Vol. 10, no. 3. P. 494. https://doi.org/10.3390/cells10030494.

14. Rizo-Téllez S. A., Sekheri M., Filep J. G. Myeloperoxidase: Regulation of neutrophil function and target for therapy // Antioxidants. 2022. Vol. 11, no. 11. P. 2302. https://doi.org/10.3390/antiox11112302.

15. Delgado-Rizo V., Martínez-Guzmán M. A., Iñiguez-Gutierrez L. et al. Neutrophil extracellular traps and its implications in inflammation: an overview // Frontiers in Immunology. 2017. Vol. 8. P. 81.

16. Hoeksema M., Tripathi S., White M. et al. Arginine-rich histones have strong antiviral activity for influenza a viruses // Journal of Innate Immunity. 2015. Vol. 21, no. 7. P. 736–745. https://doi.org/10.1177/1753425915593794.

17. Branzk N., Lubojemska A., Hardison S. E. et al Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens // Nature Immunology. 2014. Vol. 15, no. 11. P. 1017–1025. https://doi.org/10.1038/ni.2987.

18. Плехова Н. Г., Кодрашова Н. М., Гельцер Б. И. и др. Клеточно-молекулярные факторы врожденной защиты и их роль в патогенезе пневмонии // Иммунология. 2017. Т. 38, № 2. С. 124–129.

19. Zuo Y., Zuo M., Yalavarthi S. et al. Neutrophil extracellular traps and thrombosis in COVID-19 // Journal of Thrombosis and Thrombolysis. 2021. Vol. 51, no. 2. P. 446–453. https://doi.org/10.1007/s11239-020-02324-z.

20. Казимирский А. Н., Салмаси Ж. М., Порядин Г. В. Антивирусная система врожденного иммунитета: патогенез и лечение COVID-19 // Вестник РГМУ. 2020. № 5. С. 5–14.

21. Koppe U., Suttorp N., Opitz B. Recognition of Streptococcus pneumoniae by the innate immune system // Cellular Microbiology. 2012. Vol. 14, no. 4. P. 460–466. https://doi.org/10.1111/j.1462-5822.2011.01746.x.

22. Witzenrath M., Pache F., Lorenz D. et al. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia // The Journal of Immunology. 2011. Vol. 187, no. 1. P. 434–440. https://doi.org/10.4049/jimmunol.1003143.

23. Li R. H. L., Tablin F. A comparative review of neutrophil extracellular traps in sepsis // Frontiers in Veterinary Science. 2018. No. 5. P. 291. https://doi.org/10.3389/fvets.2018.00291.

24. Ekaney M. L., Otto G. P., Sossdorf M. et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation // Critical Care. 2014. Vol. 18, no. 5. P. 543. https://doi.org/10.1186/s13054-014-0543-8.

25. Denning N. L., Aziz M., Gurien S. D. et al. DAMPs and NETs in sepsis // Frontiers in Immunology. 2019. No. 10. P. 2536. https://doi.org/10.3389/fimmu.2019.02536.

26. Homa-Mlak I., Majdan A., Mlak R. et al. Metastatic potential of NET in neoplastic disease // Advances in Hygiene and Experimental Medicine. 2016. Vol. 70. P. 887–895. https://doi.org/10.5604/17322693.1216275.

27. Monti M., De Rosa V., Iommelli F. et al. Neutrophil extracellular traps as an adhesion substrate for different tumor cells expressing RGD-binding integrins // International Journal of Molecular Sciences. 2018. Vol. 19, no. 8. P. 2350. https://doi.org/10.3390/ijms19082350.

28. Kanamaru R., Ohzawa H., Miyato H. et al. Neutrophil extracellular traps generated by low density neutrophils obtained from peritoneal lavage fluid mediate tumor cell growth and attachment //Journal of Visualized Experiments. 2018. No. 138. P. 58201.https://doi.org/10.3791/58201.

29. Gonzalez-Aparicio M., Alfaro C. Influence of interleukin-8 and neutrophil extracellular trap (NET) formation in the tumor microenvironment: Is there a pathogenic role? // Journal of Immunology Research. 2019. P. 6252138. https://doi.org/10.1155/2019/6252138.

30. Avalos B. R., Gasson J. C., Hedvat C. et al. Human granulocyte colony-stimulating factor: biologic activities and receptor characterization on hematopoietic cells and small cell lung cancer cell lines // Blood. 1990. Vol. 75, no. 4. P. 851–857. https://doi.org/10.1182/blood.V75.4.851.851.

31. Snoderly H. T., Boone B. A., Bennewitz M. F. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment // Breast Cancer Research. 2019. Vol. 21, no. 1. P. 145. https://doi.org/10.1186/s13058-019-1237-6.

32. Cedervall J., Zhang Y., Huang H. et al. Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals // Cancer Research. 2015. Vol. 75, no. 13. P. 2653–2662. https://doi.org/10.1158/0008-5472.CAN-14-3299.

33. Boone B. A., Murthy P., Miller-Ocuin J. et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps // BMC Cancer. 2018. Vol. 18, no. 1. P. 678. https://doi.org/10.1186/s12885-018-4584-2.

34. Richardson J. J. R., Hendrickse C., Gao-Smith F. et al. Neutrophil extracellular trap production in patients with colorectal cancer in vitro // International Journal of Inflammation. 2017. P. 4915062. https://doi.org/10.1155/2017/4915062.

35. Tohme S., Yazdani H. O., Al-Khafaji A. B. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress // Cancer Research. 2016. Vol. 76, no. 6. P. 1367–1380. https://doi.org/10.1158/0008-5472.

36. Thålin C., Lundström S., Seignez C. et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer // PLoS One. 2018. Vol. 13, no. 1. P. e0191231. https://doi.org/10.1371/journal.pone.0191231.

37. Li J. C., Zou X. M., Yang S. F. et al. Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer // World Journal of Gastroenterology. 2022. Vol. 28, no. 26. P. 3132–3149. https://doi.org/10.3748/wjg.v28.i26.3132.

38. Darbousset R., Thomas G. M., Mezouar S. et al. Tissue factorpositive neutrophils bind to injured endothelial wall and initiate thrombus formation // Blood. 2012. Vol. 120, no. 10. P. 2133–2143. https://doi.org/10.1182/blood-2012-06-437772.

39. Бицадзе В. О., Слуханчук Е. В., Хизроева Д. Х. и др. Внекле-точные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний // Вестник Российской академии медицинских наук. 2021. Т. 76, № 1. С. 75–85.

40. Mezger M., Nording H., Sauter R. et al. Platelets and immune responses during thromboinflammation // Frontiers in Immunology. 2019. No. 10. P. 1731. https://doi.org/10.3389/fimmu.2019.01731.

41. Burzynski L. C., Humphry M., Pyrillou K. et al. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin // Immunity. 2019. Vol. 50, no. 4. P. 1033–1042.e6. https://doi.org/10.1016/j.immuni.2019.03.003.

42. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity // Nature Reviews Immunology. 2013. Vol. 13, no. 1. P. 34–45. https://doi.org/10.1038/nri3345.

43. Ito T. PAMPs and DAMPs as triggers for DIC // Journal of Intensive Care. 2014. Vol. 2, no. 1. P. 67. https://doi.org/10.1186/s40560-014-0065-0.

44. Perdomo J., Leung H. H. L. Immune thrombosis: exploring the significance of immune complexes and NETosis // Biology. 2023. Vol. 12, no. 10. P. 1332. https://doi.org/10.3390/biology12101332.

45. Knight J. S., Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome // Seminars in Immunopathology. 2022. Vol. 44, no. 3. P. 347–362. https://doi.org/

46. 1007/s00281-022-00916-w.

47. Kapoor S., Opneja A., Nayak L. The role of neutrophils in thrombosis // Thrombosis Research. 2018. No. 170. P. 87–96. https://doi.org/10.1016/j.thromres.2018.08.005.

48. Mereuta O. M., Agarwal T., Ghozy S. et al. Shell versus core architecture and biology of thrombi in acute ischemic stroke: A systematic review // Clinical and Applied Thrombosis/Hemostasis. 2023. No. 29. https://doi.org/10.1177/10760296231213632.

49. Zhou P., Li T., Jin J. et al. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion // еBioMedicine. 2020. No. 53. P. 102671. https://doi.org/10.1016/j. ebiom.2020.102671.


Review

For citations:


Kisina T.E., Vorobyeva N.A. EXTRACELLULAR TRAPS: A NEW FUNCTION OF NEUTROPHILS AND THEIR ROLE IN INFLAMMATION AND HEMOSTASIS. Vestnik SurGU. Meditsina. 2024;17(4):63–74. (In Russ.) https://doi.org/10.35266/2949-3447-2024-4-9

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3447 (Online)