1. Солодовникова О. Н., Молочный В. П. «Кислородный взрыв» нейтрофильных лейкоцитов в патогенезе воспалительной реакции при гнойных инфекциях у детей // Дальневосточный медицинский журнал. 2012. № 1. С. 118-122.
2. Tecchio C., Micheletti A., Cassatella M. A. Neutrophil-derived cytokines: facts beyond expression // Frontiers in Immunology. 2014. Vol. 21, no. 5. P. 508. https://doi.org/10.3389/fimmu.2014.00508.
3. Беляева А. С., Ванько Л. В., Матвеева Н. К. и др. Нейтрофильные гранулоциты как регуляторы иммунитета // Иммунология. 2016. Т. 37, № 2. С. 129-133.
4. Masucci M. T., Minopoli M., Del Vecchio S. et al. The emerging role of Neutrophil Extracellular Traps (NETs) in tumor progression and metastasis front // Frontiers in Immunology. 2020. No. 11. P. 1749. https://doi.org/10.3389/fimmu.2020.01749.
5. Carty M., Guy C., Bowie A. G. Detection of viral infections by innate immunity // Biochemical Pharmacology. 2021. No. 183. P. 114316. https://doi.org/10.1016/j.bcp.2020.114316.
6. Гаранина Е. Е., Мартынова Е. В., Иванов К. Я. и др. Инфламмасомы: роль в патогенезе заболеваний и терапевтический потенциал // Ученые записки Казанского университета. Сер.: Естественные науки. 2020. Т. 162, № 1. С. 80-111.
7. Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria // Science. 2004. Vol. 303, no. 5663. P. 1532-1535. https://doi.org/10.1126/science.1092385.
8. Воробьева Н. В. Нейтрофильные внеклеточные ловушки: новые аспекты // Вестник Московского университета. Сер.: Биология. 2020. Т. 75, № 4. С. 210-225.
9. Liu Y., Lightfoot Y. L., Seto N. et al. Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupus // Journal of Clinical Investigation Insight. 2018. Vol. 3, no. 23. P. e124729. https://doi.org/10.1172/ jci.insight.124729.
10. Mutua V., Gershwin L. J. A review of Neutrophil Extracellular Traps (NETs) in disease: Potential anti-NETs therapeutics // Clinical Reviews Allergy & Immunology. 2021. Vol. 61, no. 2. P. 194-211. https://doi.org/10.1007/s12016-020-08804-7.
11. Becker R. C. COVID-19 update: Covid-19-associated coagulopathy // Journal of Thrombosis and Thrombolysis. 2020. Vol. 50, no. 1. P. 54-67. https://doi.org/10.1007/s11239-020-02134-3.
12. Colling M. E., Kanthi Y. COVID-19-associated coagulopathy: An exploration of mechanisms // Vascular Medicine. 2020. Vol. 25, no. 5. P. 471-478. https://doi.org/10.1177/1358863X20932640.
13. Sabbatini M., Magnelli V., Renò F. NETosis in wound healing: When enough is enough // Cells. 2021. Vol. 10, no. 3. P. 494. https://doi.org/10.3390/cells10030494.
14. Rizo-Téllez S. A., Sekheri M., Filep J. G. Myeloperoxidase: Regulation of neutrophil function and target for therapy // Antioxidants. 2022. Vol. 11, no. 11. P. 2302. https://doi.org/10.3390/antiox11112302.
15. Delgado-Rizo V., Martínez-Guzmán M. A., Iñiguez-Gutierrez L. et al. Neutrophil extracellular traps and its implications in inflammation: an overview // Frontiers in Immunology. 2017. Vol. 8. P. 81.
16. Hoeksema M., Tripathi S., White M. et al. Arginine-rich histones have strong antiviral activity for influenza a viruses // Journal of Innate Immunity. 2015. Vol. 21, no. 7. P. 736-745. https://doi.org/10.1177/1753425915593794.
17. Branzk N., Lubojemska A., Hardison S. E. et al Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens // Nature Immunology. 2014. Vol. 15, no. 11. P. 1017-1025. https://doi.org/10.1038/ni.2987.
18. Плехова Н. Г., Кодрашова Н. М., Гельцер Б. И. и др. Клеточно-молекулярные факторы врожденной защиты и их роль в патогенезе пневмонии // Иммунология. 2017. Т. 38, № 2. С. 124-129.
19. Zuo Y., Zuo M., Yalavarthi S. et al. Neutrophil extracellular traps and thrombosis in COVID-19 // Journal of Thrombosis and Thrombolysis. 2021. Vol. 51, no. 2. P. 446-453. https://doi.org/10.1007/s11239-020-02324-z.
20. Казимирский А. Н., Салмаси Ж. М., Порядин Г. В. Антивирусная система врожденного иммунитета: патогенез и лечение COVID-19 // Вестник РГМУ. 2020. № 5. С. 5-14.
21. Koppe U., Suttorp N., Opitz B. Recognition of Streptococcus pneumoniae by the innate immune system // Cellular Microbiology. 2012. Vol. 14, no. 4. P. 460-466. https://doi.org/10.1111/j.1462-5822.2011.01746.x.
22. Witzenrath M., Pache F., Lorenz D. et al. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia // The Journal of Immunology. 2011. Vol. 187, no. 1. P. 434-440. https://doi.org/10.4049/jimmunol.1003143.
23. Li R. H. L., Tablin F. A comparative review of neutrophil extracellular traps in sepsis // Frontiers in Veterinary Science. 2018. No. 5. P. 291. https://doi.org/10.3389/fvets.2018.00291.
24. Ekaney M. L., Otto G. P., Sossdorf M. et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation // Critical Care. 2014. Vol. 18, no. 5. P. 543. https://doi.org/10.1186/s13054-014-0543-8.
25. Denning N. L., Aziz M., Gurien S. D. et al. DAMPs and NETs in sepsis // Frontiers in Immunology. 2019. No. 10. P. 2536. https://doi.org/10.3389/fimmu.2019.02536.
26. Homa-Mlak I., Majdan A., Mlak R. et al. Metastatic potential of NET in neoplastic disease // Advances in Hygiene and Experimental Medicine. 2016. Vol. 70. P. 887-895. https://doi.org/10.5604/17322693.1216275.
27. Monti M., De Rosa V., Iommelli F. et al. Neutrophil extracellular traps as an adhesion substrate for different tumor cells expressing RGD-binding integrins // International Journal of Molecular Sciences. 2018. Vol. 19, no. 8. P. 2350. https://doi.org/10.3390/ijms19082350.
28. Kanamaru R., Ohzawa H., Miyato H. et al. Neutrophil extracellular traps generated by low density neutrophils obtained from peritoneal lavage fluid mediate tumor cell growth and attachment //Journal of Visualized Experiments. 2018. No. 138. P. https://doi.org/https://doi.org/10.3791/58201.
29. Gonzalez-Aparicio M., Alfaro C. Influence of interleukin-8 and neutrophil extracellular trap (NET) formation in the tumor microenvironment: Is there a pathogenic role? // Journal of Immunology Research. 2019. P. 6252138. https://doi.org/10.1155/2019/6252138.
30. Avalos B. R., Gasson J. C., Hedvat C. et al. Human granulocyte colony-stimulating factor: biologic activities and receptor characterization on hematopoietic cells and small cell lung cancer cell lines // Blood. 1990. Vol. 75, no. 4. P. 851-857. https://doi.org/10.1182/blood.V75.4.851.851.
31. Snoderly H. T., Boone B. A., Bennewitz M. F. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment // Breast Cancer Research. 2019. Vol. 21, no. 1. P. 145. https://doi.org/10.1186/s13058-019-1237-6.
32. Cedervall J., Zhang Y., Huang H. et al. Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals // Cancer Research. 2015. Vol. 75, no. 13. P. 2653-2662. https://doi.org/10.1158/0008-5472.CAN-14-3299.
33. Boone B. A., Murthy P., Miller-Ocuin J. et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps // BMC Cancer. 2018. Vol. 18, no. 1. P. 678. https://doi.org/10.1186/s12885-018-4584-2.
34. Richardson J. J. R., Hendrickse C., Gao-Smith F. et al. Neutrophil extracellular trap production in patients with colorectal cancer in vitro // International Journal of Inflammation. 2017. P. 4915062. https://doi.org/10.1155/2017/4915062.
35. Tohme S., Yazdani H. O., Al-Khafaji A. B. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress // Cancer Research. 2016. Vol. 76, no. 6. P. 1367-1380. https://doi.org/10.1158/0008-5472.
36. Thålin C., Lundström S., Seignez C. et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer // PLoS One. 2018. Vol. 13, no. 1. P. e0191231. https://doi.org/10.1371/journal.pone.0191231.
37. Li J. C., Zou X. M., Yang S. F. et al. Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer // World Journal of Gastroenterology. 2022. Vol. 28, no. 26. P. 3132-3149. https://doi.org/10.3748/wjg.v28.i26.3132.
38. Darbousset R., Thomas G. M., Mezouar S. et al. Tissue factorpositive neutrophils bind to injured endothelial wall and initiate thrombus formation // Blood. 2012. Vol. 120, no. 10. P. 2133-2143. https://doi.org/10.1182/blood-2012-06-437772.
39. Бицадзе В. О., Слуханчук Е. В., Хизроева Д. Х. и др. Внекле-точные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний // Вестник Российской академии медицинских наук. 2021. Т. 76, № 1. С. 75-85.
40. Mezger M., Nording H., Sauter R. et al. Platelets and immune responses during thromboinflammation // Frontiers in Immunology. 2019. No. 10. P. 1731. https://doi.org/10.3389/fimmu.2019.01731.
41. Burzynski L. C., Humphry M., Pyrillou K. et al. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin // Immunity. 2019. Vol. 50, no. 4. P. 1033-1042.e6. https://doi.org/10.1016/j.immuni.2019.03.003.
42. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity // Nature Reviews Immunology. 2013. Vol. 13, no. 1. P. 34-45. https://doi.org/10.1038/nri3345.
43. Ito T. PAMPs and DAMPs as triggers for DIC // Journal of Intensive Care. 2014. Vol. 2, no. 1. P. 67. https://doi.org/10.1186/s40560-014-0065-0.
44. Perdomo J., Leung H. H. L. Immune thrombosis: exploring the significance of immune complexes and NETosis // Biology. 2023. Vol. 12, no. 10. P. 1332. https://doi.org/10.3390/biology12101332.
45. Knight J. S., Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome // Seminars in Immunopathology. 2022. Vol. 44, no. 3. P. 347-362. https://doi.org/
46. 1007/s00281-022-00916-w.
47. Kapoor S., Opneja A., Nayak L. The role of neutrophils in thrombosis // Thrombosis Research. 2018. No. 170. P. 87-96. https://doi.org/10.1016/j.thromres.2018.08.005.
48. Mereuta O. M., Agarwal T., Ghozy S. et al. Shell versus core architecture and biology of thrombi in acute ischemic stroke: A systematic review // Clinical and Applied Thrombosis/Hemostasis. 2023. No. 29. https://doi.org/10.1177/10760296231213632.
49. Zhou P., Li T., Jin J. et al. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion // еBioMedicine. 2020. No. 53. P. 102671. https://doi.org/10.1016/j. ebiom.2020.102671.