POISON HEMLOCK CELL CULTURE EXTRACT CORRECTION OF CYTOSTATIC MYELOTOXICITY
https://doi.org/10.35266/2304-9448-2023-1-77-82
Abstract
The study aims to analyze furocoumarin extracts isolated from poison hemlock cell culture influencing the correction of cisplatin-caused cytostatic myelosuppression. The experiments were carried out on 160 CD1 female mice weighing 18–25 g. Cytostatic myelosuppression was simulated by administering cisplatin intraperitoneally once at a maximum tolerated dose of 10 mg/kg. The control group received physiological saline injections.
Poison hemlock (Conium maculatum L.) cell culture extract was administered at a dose of 30 mg/kg to prevent the development of disorders. 4 mg/kg of Warfarin Nycomed was used for comparison examination. The correctors
were administered intragastrically on the sixth day after cisplatin injected for four days. The indicators were examined on the 1st, 2nd, 5th, 7th, 10th, 15th, 20th and 30th days following the administration of cisplatin. The bone
marrow and peripheral blood values were examined using the standard method. Statistical analysis was carried out using Stat Plus Pro (build 7.3.0.0). Under conditions of cytostatic myelosuppression caused by the administration of 10 mg/kg (maximum tolerated dose) of cisplatin, the use of the poison hemlock cell culture extract contributes to the restoration of myeloid and erythroid hematopoietic germs, as well as the normalization of bone marrow and peripheral blood values. With increase in the number of mature neutrophils and lymphocytes, erythroblasts, and normoblasts, the total number of myelokaryocytes increased. The content of erythrocytes and leukocytes increased in the peripheral blood as the number of segmented neutrophils and lymphocytes increased. The dynamics of hematopoietic
sprout recovery with poison hemlock cell culture extract are similar to those of Warfarin.
About the Authors
E. P. FedorovaRussian Federation
Candidate of Sciences (Medicine), Researcher
E-mail: fedorova-elen@mail.ru
M. V. Filonova
Russian Federation
Candidate of Sciences (Biology), Junior Researcher
E-mail: maria-caurus7@yandex.ru
O. V. Neupokoeva
Russian Federation
Candidate of Sciences (Biology), Researcher
E-mail: repaov@mail.ru
T. Yu. Dubskaya
Russian Federation
Candidate of Sciences (Medicine), Senior Researcher
E-mail: tatatox@mail.ru
A. A. Churin
Russian Federation
Doctor of Sciences (Medicine)
E-mail: toxicology_lab@mail.ru
References
1. Снеговой А. В., Давыдов М. И. Современные возможности поддерживающей терапии лекарственного противоопухолевого лечения // Вестн. РОНЦ им. Н. Н. Блохина РАМН. 2016. Т. 27, № 2. С. 5–16.
2. Nurgali K., Jagoe R. T., Abalo R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae?. Front Pharmacol. 2018. Vol. 9. P. 245. DOI 10.3389/ fphar.2018.00245.
3. Кобилов О. Р. Современные принципы коррекции гематологической токсичности химиотерапии злокачественных опухолей (обзор литературы) // European Science. 2019. № 5. С. 66–73. DOI 10.24411/2410-2865-2019-10504.
4. Lin S.-H., Li M.-H., Chuang K.-A. et al. Chlorella Sorokiniana Extract Prevents Cisplatin-Induced Myelotoxicity in vitro and in vivo. Oxid Med Cell Longev. 2020. P. 7353618. DOI 10.1155/2020/7353618.
5. Петрова Г. Д., Чернявская Т. З., Горбунова Н. В. и др. Эффективность липэгфилграстима при нейтропении, индуцированной химиотерапией // Онкогематология. 2015. Т. 10, № 4. С. 38–42.
6. Bruni R., Barreca D., Protti M. et al. Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest. Molecules. 2019. Vol. 24, No. 11. P. 2163. DOI 10.3390/ molecules24112163.
7. Melough M. М., Cho E., Chun O. K. Furocoumarins: A Review of Biochemical Activities, Dietary Sources and Intake, and Potential Health Risks. Food Chem Toxicol. 2018. Vol. 113. P. 99–107.
8. Филонова М. В. Фурокумарины в коррекции нарушений гемостаза, миело- и гепатотоксичности, вызванных применением цисплатина (экспериментальное исследование) : автореф. дис. … канд. биол. наук. Томск, 2021. 26 с.
9. Дыгай А. М., Голосов О. С., Агафонов В. И. Возрастная характеристика кроветворной ткани белых крыс // Механизмы патологических реакций. 1981. С. 32–37.
10. Гольдберг Е. Д., Дыгай А. М., Шахов В. П. Методы культуры ткани в гематологии. Томск, 1992. 272 с.
11. Periayah M. H., Halim A. S., Saad A. Z. M. Mechanism Action of Platelets and Crucial Blood. Int J Hematol Oncol Stem Cell Res. 2017. Vol. 11, No. 4. P. 312–327.
12. Swystun L. L., Liaw P. C. The Role of Leukocytes in Thrombosis. Blood. 2016. Vol. 128, No. 6. Р. 753–762. DOI 10.1182/blood-2016-05-718114.
13. Weisel J. W., Litvinov R. I. Red Blood Cells: The Forgotten Player in Hemostasis and Thrombosis. J Thromb Haemost. 2019. Vol. 17, No. 2. P. 271–282. DOI 10.1111/jth.14360.
14. Сакаева Д. Д. Методы коррекции токсической нейтропении при комбинированной химиотерапии злокачественных опухолей // Рос. биотерапевт. журн. 2003. Т. 2, № 2. С. 39–46.
15. Basu A., Ghosh P., Bhattacharjee A., Patra A. R., Bhattacharya S. Prevention of Myelosuppression and Genotoxicity Induced by Cisplatin in Murine Bone Marrow Cells: Effect of an Organovanadium Compound Vanadium(III)-L-Cysteine. Mutagenesis. 2015. Vol. 30, No. 4. P. 509–517.
16. Неупокоева О. В., Федорова Е. П., Ставрова Л. А. и др. Отдаленные эффекты противоопухолевого препарата паклитаксел на наследственный материал и кроветворную систему мышей линии СВА // Бюл. эксперимент. биологии и медицины. 2020. Т. 169, № 1. С. 49–53.
17. Salvador A., Brognara E., Vedaldi D. et al. Induction of Erythroid Differentiation and Increased Globin mRNA Production with Furocoumarins and Their Photoproducts. J Photochem Photobiol B. 2013. Vol. 121. P. 57–66. DOI 10.1016/j.jphotobiol.2013.02.011.
Review
For citations:
Fedorova E.P., Filonova M.V., Neupokoeva O.V., Dubskaya T.Yu., Churin A.A. POISON HEMLOCK CELL CULTURE EXTRACT CORRECTION OF CYTOSTATIC MYELOTOXICITY. Vestnik SurGU. Meditsina. 2023;16(1):77-82. (In Russ.) https://doi.org/10.35266/2304-9448-2023-1-77-82