GENETIC DETERMINANTS OF ACUTE AND CHRONIC CORONARY SYNDROMES
https://doi.org/10.35266/2304-9448-2023-1-56-63
Abstract
The study aims to determine the genetic determinants related to chronic and acute coronary syndromes, associated with both the adverse prognosis and the fewer complications of cardiovascular diseases, the variants of modern genetic risk scales that allow improving the prognosis methods for risk of adverse outcomes (cardiovascular death, myocardial infarction, acute cerebrovascular accident) in patients with cardiovascular diseases. Most of the traditionally assessed risk factors, such as blood pressure, smoking, and physical activity levels, are variable, while genetic determinants remain constant throughout life, which provides new prospects in risk-factor assessment and the development of reducing methods for risk of adverse outcomes in patients with cardiovascular diseases. There is no unified approach to the use of genetic scales in practice, despite the established associations of some determinants with the outcome of acute and chronic coronary syndromes.
About the Authors
V. A. SekisovaRussian Federation
ostgraduate, Assistant Professor
E-mail: valeriyasekisova@mail.ru
A. S. Vorobyov
Russian Federation
Candidate of Sciences (Medicine), Associate Professor
E-mail: a.s.vorobyov@google.com
K. Yu. Nikolaev
Russian Federation
Doctor of Sciences (Medicine), Professor Officer
E-mail: nikolaevky@yandex.ru
I. A. Urvantseva
Russian Federation
Candidate of Sciences (Medicine), Chief Medical Officer
E-mail: priem@cardioc.ru
M. Yu. Donnikov
Russian Federation
Candidate of Sciences (Medicine), Leading Researcher
E-mail: donnikov@gmail.com
L. V. Kovalenko
Russian Federation
Doctor of Sciences (Medicine), Professor
E-mail: medsurdirector@gmail.com
A. E. Kasparova
Russian Federation
Doctor of Sciences (Medicine), Professor
E-mail: anzkasparova@yandex.ru
E. A. Ratushnaya
Russian Federation
Cardiovascular Surgeon
E-mail: intratio@gmail.com
A. I. Bezdenezhnykh
Russian Federation
Resident Medical
E-mail: anastasiya.bezdenezhnyh@mail.ru
References
1. Здравоохранение // Федер. служба гос. статистики. URL: https://rosstat.gov.ru/folder/13721 (дата обращения: 02.02.2023).
2. 10 ведущих причин смерти в мире // Всемирная организация здравоохранения. URL: https://www.who.int/ru/news-room/fact-sheets/ detail/the-top-10-causes-of-death (дата обращения: 02.02.2023).
3. Аверков О. В., Дупляков Д. В., Гиляров М. Ю. и др. Острый инфаркт миокарда с подъемом сегмента ST электрокардиограммы. Клинические рекомендации 2020 // Рос. кардиолог. журн. 2020. Т. 25, № 11. С. 4103.
4. Шестерня П. А., Никулина С. Ю., Шульман В. А. и др. Перспективы использования генотипирования полиморфизмов хромосомы 9р21 с целью стратификации риска инфаркта миокарда у лиц молодого возраста // Клиницист. 2013. № 2. С. 18–22.
5. Knuuti J., Wijns W., Saraste A. et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes: the Task Force for the Diagnosis and Management of Chronic Coronary Syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020. Vol. 41, No. 3. P. 407–477.
6. Рабочая группа Европейского кардиологического общества по диагностике и лечению хронических коронарных синдромов. 2019 Рекомендации ЕSC по диагностике и лечению хрониче ского коронарного синдрома // Рос. кардиолог. журн. 2020. № 2. С. 119–182.
7. Libby P., Gerszten R. E., Ridker P. M. Biomarkers, Proteomics, Metabolomics, and Personalized Medicine. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 10th ed. Philadelphia : Elsevier Saunders, 2014. P. 84–93.
8. Ntalla I., Kanoni S., Zeng L. et al. Genetic Risk Score for Coronary Disease Identifies Predispositions to Cardiovascular and Noncardiovascular Diseases. J Am Coll Cardiol. 2019. Vol. 73, No. 23. P. 2932–2942.
9. Maksimov V. N., Orlov P. S., Ivanova А. A., Lozhkina N. G., Kuimov А. D., Savchenko S. V., Novoselov V. P., Voevoda М. I., Malyutina S. К. Complex Evaluation of the Significance of Populational Genetic Markers Associated with Myocardial Infarction and Risk Factors. Russian Journal of Cardiology. 2017. Vol. 10. P. 33–41. (In Russian).
10. Patel R. S., Schmidt A. F., Tragante V. et al. Association of Chromosome 9p21 with Subsequent Coronary Heart Disease Events: A GENIUS-CHD Study of Individual Participant Data. Circ Genom Precis Med. 2019. Vol. 12, No. 4. P. e002471.
11. Шестерня П. А., Никулина С. Ю., Шульман В. А. и др. Перспективы использования генотипирования полиморфизмов хромосомы 9р21. 3 с целью стратификации риска инфаркта миокарда у лиц молодого возраста // Клиницист. 2013. № 2. С. 18–22.
12. Кашапова А. Т., Гилязова И. Р. Общая характеристика и биогенез микроРНК // Молодеж. науч. форум: естеств. и мед. науки. 2016. № 3. С. 18–21.
13. Shirvani Samani O., Meder B. MicroRNA Assays for Acute Coronary Syndromes. Diagnosis. 2016. Vol. 3, No. 4. P. 183–188.
14. Kaur A., Mackin S. T., Schlosser K. et al. Systematic Review of MicroRNA Biomarkers in Acute Coronary Syndrome and Stable Coronary Artery Disease. Cardiovasc Res. 2020. Vol. 116, No. 6. P. 1113–1124.
15. Bernadotte A., Mikhelson V. M., Spivak I. M. Markers of Cellular Senescence. Telomere Shortening as a Marker of Cellular Senescence. Aging (Albany NY). 2016. Vol. 8, No. 1. P. 3–11.
16. Rezvan A. Telomeres, Oxidative Stress, and Myocardial Infarction. Eur Heart J. 2017. Vol. 38, No. 41. P. 3105–3107.
17. Willeit P., Raschenberger J., Heydon E. E. et al. Leucocyte Telomere Length and Risk of Type 2 Diabetes Mellitus: New Prospective Cohort Study and Literature-Based Meta-Analysis. PLoS One. 2014. Vol. 9, No. 11. P. e112483.
18. Дорощук H. A., Ланкин В. З., Тихазе А. К. и др. Длина теломеров как биомаркер риска сердечно-сосудистых осложнений у больных ишемической болезнью сердца // Терапевт. архив. 2021. Т. 93, № 1. С. 20–24.
19. De Meyer T., Nawrot T., Bekaert S. et al. Telomere Length as Cardiovascular Aging Biomarker: JACC Review Topic of the Week. J Am Coll Cardiol. 2018. Vol. 72, No. 7. P. 805–813.
20. Leening M. J. G., Steyerberg E. W., Van Calster B., D’Agostino R. B. Sr, Pencina M. J. Net Reclassification Improvement and Integrated Discrimination Improvement Require Calibrated Models: Relevance from a Marker and Model Perspective. Stat Med. 2014. Vol. 33, No. 19. P. 3415–3418.
21. Киреева В. В., Кох Н. В., Лифшиц Г. И. и др. Дисфункция эндотелия как краеугольный камень сердечно-сосудистых событий: молекулярно- и фармакогенетические аспекты // Рос. кардиолог. журн. 2014. № 10. С. 64–68.
22. Khera A. V., Chaffin M., Aragam K. G. et al. Genome-Wide Polygenic Scores for Common Diseases Identify Individuals with Risk Equivalent to Monogenic Mutations. Nature Genetics. 2018. Vol. 50, No. 9. P. 1219–1224.
23. Inouye M., Abraham G., Nelson C. P. et al. Genomic Risk Prediction of coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. Journal of the American College of Cardiology. 2018. Vol. 72, No. 16. P. 1883–1893.
24. Lu X., Liu Z., Cui Q. et al. A Polygenic Risk Score Improves Risk Stratification of coronary Artery Disease: A Large-Scale Prospective Chinese Cohort Study. Eur Heart J. 2022. Vol. 43, No. 18. P. 1702–1711.
25. Torkamani A., Wineinger N. E., Topol E. J. The Personal and Clinical Utility of Polygenic Risk Scores. Nature Reviews Genetics. 2018. Vol. 19, No. 9. P. 581–590.
26. Khera A. V., Emdin C. A., Drake I. et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. New England Journal of Medicine. 2016. Vol. 375, No. 24. P. 2349–2358.
27. Levin M. G., Kember R. L., Judy R. et al. Genomic risk Stratification Predicts All-Cause Mortality after Cardiac Catheterization. Circulation: Genomic and Precision Medicine. 2018. Vol. 11, No. 11. P. e002352.
28. Price M. J., Berger P. B., Teirstein P. S. et al. Standard-vs High-Dose Clopidogrel Based on Platelet Function Testing after Percutaneous Coronary Intervention: The GRAVITAS Randomized Trial. JAMA. 2011. Vol. 305, No. 11. P. 1097–1105.
29. Pryor R. J., Myrick J. T., Palais R. A. et al. High-Speed Melting Analysis: The Effect of Melting Rate on Small Amplicon Microfluidic Genotyping. Clinical Chemistry. 2017. Vol. 63, No. 10. P. 1624–1632.
30. Донников М. Ю., Мещеряков В. В. Поиск генных мутаций при муковисцидозе у детей методом анализа кривых плавления // Сиб. науч. мед. журн. 2018. Т. 38, № 2. С. 13–21.
31. Hussmann D., Hansen L. L. Methylation-Sensitive High Resolution Melting (MS-HRM). Methods in Molecular Biology. 2018. Vol. 1708. P. 551–571.
Review
For citations:
Sekisova V.A., Vorobyov A.S., Nikolaev K.Yu., Urvantseva I.A., Donnikov M.Yu., Kovalenko L.V., Kasparova A.E., Ratushnaya E.A., Bezdenezhnykh A.I. GENETIC DETERMINANTS OF ACUTE AND CHRONIC CORONARY SYNDROMES. Vestnik SurGU. Meditsina. 2023;16(1):56-63. (In Russ.) https://doi.org/10.35266/2304-9448-2023-1-56-63