Preview

Vestnik SurGU. Meditsina

Advanced search

RADIATION-INDUCED ENDOTHELIAL DAMAGE

https://doi.org/10.34822/2304-9448-2022-4-46-53

Abstract

The study aims to review the scientific literature on the pathogenetic mechanisms of ionizing radiation damage to endotheluim during radiation therapy in cancer patients. Materials and methods. The scientific literature was searched in the Web of Science, Scopus, MEDLINE, PubMed and RSCI databases using such keywords as endothelium, radiation, and radiation therapy. The search depth was 10 years. Results. Most of the negative effects of radiation exposure are associated with the development of endothelial dysfunction. Thus, a disruption in endothelial homeostasis results in the development of a pro-inflammatory phenotype, which is followed by the inclusion of a number of pathogenetic mechanisms that cause the emergence of a variety of clinical conditions, including cardiovascular pathology. This problem occurs due to the progression of cardiovascular diseases in cancer patients, which worsens the course of the underlying disease and often leads to death. This article reviews and summarizes the latest data on the mechanisms and pathogenesis of radiationinduced endothelial damage, as well as the consequences of endothelial dysfunction. The data obtained will help develop a preventive strategy for patients undergoing radiation therapy.

About the Authors

Ilya S. Grekov
M. Gorky Donetsk National Medical University, Donetsk
Russian Federation

Assistant Professor, Pathologist



Evgenii A. Seleznеv
State Budgetary Institution Amvrosievsky Central Hospital, Amvrosievka
Russian Federation

Cardiologist, Radiologist



References

1. Bouten R. M., Young E. F., Selwyn R. et al. Chapter Two – Effects of Radiation on Endothelial Barrier and Vascular Integrity // Tissue Barriers in Disease, Injury and Regeneration. 2021. P. 43–94. DOI 10.1016/B978-0-12-818561-2.00007-2.

2. Bouïs D. Endothelium In Vitro: A Review of Human Vascular Endothelial Cell Lines for Blood Vessel-Related Research // Angiogenesis. 2001. Vol. 4. P. 91–102. DOI 10.1023/A:1012259529167.

3. Weintraub N. L., Jones W. K., Manka D. Understanding Radiation-Induced Vascular Disease // J Am Coll Cardiol. 2010. Vol. 55, Is. 12. P. 1237–1239.

4. Bostrom M. A., Kalm M., Eriksson Y. et al. Role for Endothelial Cells in Radiation-Induced Inflammation // Int J Radiat Biol. 2018. Vol. 94. P. 259–271.

5. Folkes L. K., O’Neill P. Modification of DNA Damage Mechanisms by Nitric Oxide during Ionizing Radiation // Free Radic Biol Med. 2013. Vol. 58. P. 14–25.

6. Venkatesulu B., Mahadevan L., Aliru M. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms // JACC Basic Trans Science. 2018. Vol. 3, Is. 4. P. 563–572. DOI 10.1016/j.jacbts.2018.01.014.

7. Vestweber D. Molecular Mechanisms that Control Endothelial Cell Contacts // J Pathol. 2000. Vol. 190, Is. 3. P. 281–291.

8. Sun L., Chen L., Bai L. et al. Reactive Oxygen Species Mediates 50-Hz Magnetic Field-Induced EGF Receptor Clustering via Acid phingomyelinase Activation // Int J Radiat Biol. 2018. Vol. 94, Is. 7. P. 678–684. DOI 10.1080/09553002.2018.1466208.

9. Ferreira F. U., Eduardo Botelho Souza L., Hassibe Thomé C. et al. Endothelial Cells Tissue-Specific Origins Affects Their Responsiveness to TGF-Β2 during Endothelial-to-Mesenchymal Transition // Int J Mol Sci. 2019. Vol. 20, Is. 3. P. 458.

10. Ortiz de Choudens S., Sparapani R., Narayanan J. et al. Lisinopril Mitigates Radiation-Induced Mitochondrial Defects in Rat Heart and Blood Cells // Front Oncol. 2022. Vol. 12. P. 828177. DOI 10.3389/fonc.2022.828177.

11. Darby S. C., Ewertz M., Hall P. Ischemic Heart Disease after Breast Cancer Radiotherapy // N Engl J Med. 2013. Vol. 368. P. 2523–2527.

12. Panganiban R. A. M., Mungunsukh O., Day R. M. X-Irradiation Induces ER Stress, Apoptosis, and Senescence in Pulmonary Artery Endothelial Cells // Int J Radiat Biol. 2013. Vol. 89, Is. 8. P. 656–667.

13. Baluna R. G., Eng T. Y., Thomas C. R. Adhesion Molecules in Radiotherapy // Radiat Res. 2006. Vol. 166. P. 819–831.

14. Lafargue A., Degorre C., Corre I. et al. Ionizing Radiation Induces Long-Term Senescence in Endothelial Cells through Mitochondrial Respiratory Complex II Dysfunction and Superoxide Generation // Free Radic Biol Med. 2017. Vol. 108. P. 750–759. DOI 10.1016/j.freeradbiomed.2017.04.019.

15. Sandoo A., Veldhuijzen van Zanten J. J. C. S., Metsios G. S., Carroll D., Kitas G. D. The Endothelium and Its Role in Regulating Vascular Tone // Open Cardiovasc Med. 2010. Vol. 4. P. 302–312.

16. Kim I., Moon S.-O., Kim S. H. et al. Vascular Endothelial Growth Factor Expression of Intercellular Adhesion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), and E-Selectin through Nuclear Factor-Kappa B Activation in Endothelial Cells // J Biol Chem. 2001. Vol. 276, Is. 10. P. 7614–7620.

17. Paris F. Endothelial Apoptosis as the Primary Lesion Initiating Intestinal Radiation Damage in Mice // Science. 2001. Vol. 293, Is. 5528. P. 293–297.

18. Li Y.-Q., Chen P., Haimovitz-Friedman A., Reilly R. M., Wong C. S. Endothelial Apoptosis Initiates Acute Blood-Brain Barrier Disruption after Ionizing Radiation // Cancer Res. 2003. Vol. 63, Is. 18. P. 5950–5956.

19. Krigsfeld G. S., Kennedy A. R. Is Disseminated Intravascular Coagulation the Major Cause of Mortality from Radiation at Relatively Low Whole Body Doses? // Radiat Res. 2013. Vol. 180, Is. 3. P. 231–234.

20. Pilones K. A., Formenti S. C., Demaria S. Abstract 1416: Peritumoral IL-15 Potentiates Radiation-Induced Anti-Tumor Immunity // Int J Radiat Oncol Biol Phys. 2016. Vol. 76, Is. 14. P. 1416.

21. Wang Y., Boerma M., Zhou D. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases // Radiat Res. 2016. Vol. 186, Is. 2. P. 153–161. DOI 10.1667/RR14445.1.

22. Nguyen H. Q., To N. H., Zadigue P. et al. Ionizing Radiation-Induced Cellular Senescence Promotes Tissue Fibrosis after Radiotherapy. A Review // Crit Rev Oncol Hematol. 2018. Vol. 129. P. 13–26. DOI 10.1016/j.critrevonc.2018.06.012.

23. Baselet B., Sonveaux P., Baatout S., Aerts A. Pathological Effects of Ionizing Radiation: Endothelial Activation and Dysfunction // Cell Mol Life Sci. 2019. Vol. 76, Is. 4. P. 699–728. DOI 10.1007/s00018-018-2956-z.

24. Terwoord J. D., Beyer A. M., Gutterman D. D. Endothelial Dysfunction as a Complication of Anti-Cancer Therapy // Pharmacol Ther. 2022. Vol. 237. P. 108116. DOI 10.1016/j.pharmthera.2022.108116.

25. Bloom S. I., Islam M. T., Lesniewski L. A., Donato A. J. Mechanisms and Consequences of Endothelial Cell Senescence // Nat Rev Cardiol. 2022. DOI 10.1038/s41569-022-00739-0.

26. Ding Y.-N., Wang H.-Y., Chen H.-Z., Liu D.-P. Targeting Senescent Cells for Vascular Aging and Related Diseases // J Mol Cell Cardiol. 2022. Vol. 162. P 43–52. DOI 10.1016/j.yjmcc.2021.08.009.

27. Tapio S. Ionizing Radiation Effects on Cells, Organelles and Tissues on Proteome Level // Adv Exp Med Biol. 2013. Vol. 990. P. 37–48. DOI 10.1007/978-94-007-5896-4_2.

28. Nagane M., Yasui H., Kuppusamy P., Yamashita T., Inanami O. DNA Damage Response in Vascular Endothelial Senescence: Implication for Radiation-Induced Cardiovascular Diseases // J Radiat Res. 2021. Vol. 62, Is. 4. P. 564–573. DOI 10.1093/jrr/rrab032.

29. Bautista-Niño P. K., Portilla-Fernandez E., Rubio-Beltrán E. et al. Local Endothelial DNA Repair Deficiency Causes Aging-Resembling Endothelial-Specific Dysfunction // Clin Sci. 2020. Vol. 134, Is. 7. P. 727–746. DOI 10.1042/CS20190124.

30. Wijerathne H., Langston J. C. Mechanisms of Radiation-Induced Endothelium Damage: Emerging Models and Technologies // Radiother Oncol. 2021. Vol. 158. P. 21–32. DOI 10.1016/j.radonc.2021.02.007.


Review

For citations:


Grekov I.S., Seleznеv E.A. RADIATION-INDUCED ENDOTHELIAL DAMAGE. Vestnik SurGU. Meditsina. 2022;(4 (54)):46-53. (In Russ.) https://doi.org/10.34822/2304-9448-2022-4-46-53

Views: 172


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3447 (Online)