A MODERN VIEW ON THE CONCEPT OF FIELD CANCERIZATION
https://doi.org/10.34822/2304-9448-2021-2-61-70
Abstract
The study aims to analyze modern ideas about the phenomenon of field cancerization, the mechanisms of its pathogenesis and morphogenesis, its importance for the clinical findings, preventive care, early diagnosis, and promising approaches to the treatment of tumors. Material and methods. The literature search is carried out using the following databases: CyberLeninka, PubMed, Nature Pathology, MEDLINE, and PLOS ONE. The search depth does not exceed ten years and is determined by the fundamental nature of the work. The keywords used in the search are tumor field, field cancerization, tumor-stroma interaction. Results. In the works of recent years, the tumor field or the field cancerization is considered to be a tissue with accumulated genetic and epigenetic changes. These changes provide cells with clonal differences and proliferative dominance with a gradual evolution of their phenotype from normal to precancerous (focal hyperplasia, metaplasia and dysplasia, cancer in situ) and tumor, characterized by the appearance of the ability to epithelial-mesenchymal transition, invasion, and metastasis. Among the most important determinants of the formation of the tumor field are aging, the action of chemical and physical mutagens, and chronic inflammation. Whereas among the mechanisms of field formation, DNA methylation and microRNA dysregulation are of great importance. Changes in the stromal compartment of the tissue (extracellular matrix, connective tissue cells) can play a leading role in the initiation of the tumor process, which is determined by the appearance of a special tumor-associated phenotype of fibroblasts and macrophages, as well as changes in the immune status of the tissue. Understanding the concept of the tumor field is of high significance for the early detection of precancerous changes, the prevention of cancer development and its early diagnosis, as well as the development of new tactics of targeted therapy.
About the Author
L. A. NaumovaRussian Federation
Doctor of Sciences (Medicine), Professor of the Department of Pathophysiology and General Pathology, Medical Institute
Е-mail: naumovala@yandex.ru
References
1. Dotto G. P. Multifocal Epithelial Tumors and Field Cancerization: Stroma as a Primary Determinant // J Clin Invest. 2014. № 124 (4). P. 1446–1453. DOI 10.1172/JCI72589.
2. Fernández J. P., Méndez-Sánchez S. C., Gonzalez-Correa C. A., Miranda D. A. Could Field Cancerization Be Interpreted as a Biochemical Anomaly Amplification due to Transformed Cells? // Med Hypotheses. 2016. № 97. P. 107–111. DOI 10.1016/j.mehy.2016.10.026.
3. Curtius K., Wright N. A., Graham T. A. An Evolutionary Perspective on Field Cancerization // Nat Rev Cancer. 2017. № 18 (1). P. 19–32. DOI 10.1038/nrc.2017.102.
4. Pereira A. L., Magalhães L., Moreira F. C. et al. Epigenetic Field Cancerization in Gastric Cancer: Micrornas as Promising Biomarkers // Journal of Cancer. 2019. № 10 (6). P. 1560–1569. DOI 10.7150/jca.27457.
5. Takeshima H., Ushijima T. Accumulation of Genetic and Epigenetic Alterations in Normal Cells and Cancer Risk // NPJ Precision Oncology. 2019. № 3. DOI 10.1038/s41698- 019-0079-0.
6. Бабаян А. Ю., Залетаев Д. В., Немцова М. В. Подтверждение значения полей канцеризации в генезе поверхностного рака мочевого пузыря // Молекуляр. медицина, 2013. № 1. С. 24–28.
7. Christensen S. R. Recent Advances in Field Cancerization and Management of Multiple Cutaneous Squamous Cell Carcinomas // F1000Research. 2018.№ 7. DOI 10.12688/f1000research.12837.1.
8. Hande A. H., Mohite D. P., Chaudhary M. S. et al. Evidence Based Demonstration of the Concept of Field Cancerization’ by p53 Expression in Mirror Image Biopsies of Patients with Oral Squamous Cell Carcinoma – an Immunohistochemical Study // Rom J Morphol Em-bryol. 2015.№ 56 (3). P. 1027–1033.
9. Stearman R., Dwyer-Nield L., Grady M. C., Malkinson A. M., Yeraci M. W. A Macrophage Gene Expression Signature Defines a field Effect in the Lung Tumor Microenvironment // Cancer res. 2008. № 68 (1). P. 34–43. DOI 10.1158/0008-5472.CAN-07-0988.
10. Braakhuis B. J. M., Brakenhoff R. H., Leemans C. R. Second Field Tumor: A New Opportunity for Cancer Preventing?// The Oncologist. 2005. № 10 (7). P. 493–500. DOI 10.1634/theoncologist.10-7-493theoncologist.alphamedpress.org/content/10/7/493.
11. Redente E. F., Orlicky D. J., Bouchard R. J. Tumour Signaling to the Bone Marrow Changes to the Phenotype of Monocytes and Pulmonary Macrophages During Urethane-Induced Primary Lung Tumourogenesis in A/J Mice // Am J Pathol. 2007. № 170 (2). P. 693–708. DOI 10.2353/ajpath.2007.060566.
12. Кит О. И., Франциянц Е. М., Геворкян Ю. А., Комарова Е. Ф., Сальникова М. М., Малейко М. Л. Состояние стероидного гомеостаза опухолевой ткани различных морфологических форм рака желудка // Паллиатив. медицина и реабилитация. 2011. № 4. C. 35–38.
13. Tan M. P., Tot T. The Sick Lobe Hypothesis, Field Cancerisation and the New Era of Preci-sion Breast Surgery // Gland Surg. 2018. № 7 (6). P. 611–618. DOI 10.21037/gs.2018.09.08.
14. Lee S. S., Cheah Y. K. The Interplay between MicroRNAs and Cellular Components of Tumour Microenvironment (TME) on Non-Small-Cell Lung Cancer (NSCLC) Progression // Journal of Immunology Research. 2019. DOI 10.1155/2019/3046379.
15. Förster S., Gretschel S., Jöns T., Yashiro M., Kemmner W. THBS4, a Novel Stromal Mole-cule of Diffuse-Type Gastric Adenocarcinomas, Identified by Transcriptome-Wide Expres-sion Profiling // Mod Pathol. 2011. № 24 (10). P. 1390–1403. DOI 10.1038/modpathol.2011.99.
16. West J., Bianconi G., Severini S., Teschendorff A. E. Differential Network Entropy Reveals Cancer System Hallmarks // Scientific Reports. 2012. № 802. DOI 10.1038/ srep00802.
17. DeFilippis R. A., Fordyce C., Patten K. et al. Stress Signaling from Human Mammary Epithelial Cells Contributes to Phenotypes of Mammographic Density // Cancer Res. 2014. № 74 (18). P. 5032–5044. DOI 10.1158/0008-5472.CAN-13-3390.
18. Gonzalez D. M., Medici D. Signaling Mechanisms of the Epithelial-Mesenchymal Transition // Science Signaling. 2014. № 7 (344). DOI 10.1126/scisignal.2005189.
19. Spinelli F. M., Vitale D. L., Demarchi G., Cristina C., Alaniz L. The Immunological Effect of Hyaluronan in Tumor Angiogenesis // Clin Transl Immunology. 2015. № 4 (12). P. 1–9. DOI 10.1038/cti.2015.35.
20. Afik R., Zigmond E., Vugman M. et al. Tumor Macrophages
21. are Pivotal Constructors of Tumor Collagenous Matrix // J Exp Med. 2016. № 213 (11). P. 2315–2331. DOI 10.1084/ jem.20151193.
22. Gascard Ph., Tlsty Th. D. Carcinoma-Associated Fibroblasts:
23. Orchestrating the Composition of Malignancy // Genes Dev. 2016. № 30 (9). P. 1002–1019. DOI 10.1101/ gad.279737.116.
24. Walker C., Mojares E., Del Río Hernández A. Role of Extracellular Matrix in Development and Cancer Progression // Int J Mol Sci. 2018. № 19 (10). DOI 10.3390/ijms19103028.
25. Kim B., Jang J., Heo Y. J. et al. Dysregulated miRNA in a Cancer-Prone Environment: A Study of Gastric Non-Neoplastic Mucosa // Sci Rep. 2020. № 10 (1). DOI 10.1038/ s41598-020-63230-1.
26. Grigolato R., Bizzoca M. E., Calabrese L., Leuci S.,Mignogna M. D., Muzio L. L. Leukoplakia and Immunology: New Chemoprevention Landscapes? // Int J Mol Sci. 2020. № 21 (18). DOI 10.3390/ijms21186874.
27. Chaves A. L. F., Silva A. G., Maia F. M. et al. Reduced CD8 + T Cells Infiltration Can Be Associated to a Malignant Transformation in Potentially Malignant Oral Epithelial Lesions // Clin Oral Investig. 2019. № 23 (4). P. 1913–1919. DOI 10.1007/s00784-018-2622-8.
28. Pirlog R., Cismaru A., Nutu A., Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization // Int J Mol Sci. 2021. № 22 (2). P. 746. DOI 10.3390/ijms22020746.
29. Кулигина Е. Ш. Эпидемиологические и молекулярные аспекты рака молочной железы // Практич. онкология. 2010. Т. 11, № 4. C. 203–216.
30. Augsten M., Cancer-Associated Fibroblasts as Another Polarized Cell Type of the Tumor Microenvironment // Front Oncol. 2014. № 4 (62). DOI 10.3389/fonc.2014.00062.
31. Kasashima H., Yashiro M., Nakamae H. et al. Bone Marrow-Derived Stromal Cells are Associated with Gastric Cancer Progression // Br J Cancer. 2015. № 113 (3). P. 443–452. DOI 10.1038/bjc.2015.236.
32. Наумова Л. А. Общепатологические аспекты рака желудка, ассоциированного с системной недифференцированной дисплазией соединительной ткани. Новосибирск, 2019. 160 с.
Review
For citations:
Naumova L.A. A MODERN VIEW ON THE CONCEPT OF FIELD CANCERIZATION. Vestnik SurGU. Meditsina. 2021;(2 (48)):61-70. (In Russ.) https://doi.org/10.34822/2304-9448-2021-2-61-70