Preview

Vestnik SurGU. Meditsina

Advanced search

PARADOXES OF REPERFUSION IN THE PRACTICE OF CRITICAL CONDITIONS: POSSIBLE SOLUTION

https://doi.org/10.34822/2304-9448-2020-3-69-75

Abstract

The study aims to clarify the pathogenetic factors of ischemia/reperfusion syndrome in critical conditions. Material and methods. The 122 open scientific publications in Pubmed, Medline, Embase, and e-Library.ru databases are analyzed. Data from 44 articles are included in the study. Results. The review presents modern literary data on ischemia/reperfusion syndrome, clarifying pathogenetic factors that determine the main damaging determinants. The authors draw attention to the factors influencing the severity of reperfusion damage, with an emphasis on the role of the oxygen paradox of reperfusion, potentiating free-radical oxidation in the presence of free iron ions, and damage to the respiratory chain of mitochondria. These factors, according to research, are the basis of the development of endothelial dysfunction, which causes the formation of multiple organ dysfunction syndrome in a number of critical conditions.

About the Authors

A. V. Kolyadko
Nizhnevartovsk Regional Clinical Hospital, Nizhnevartovsk
Russian Federation
Anaesthesiologist-reanimatologist


Ye. A. Lang
Omsk City Clinical Hospital № 1 n. a. A. N. Kabanov, Omsk
Russian Federation
Anaesthesiologist-reanimatologist


N. V. Govorova
Omsk State Medical University, Omsk
Russian Federation
Doctor of Sciences (Medicine), Professor, Head, Anesthesiology and Reanimation
Department


T. V. Boyko
Omsk State Agrarian University named after P. A. Stolypin, Omsk
Russian Federation
Doctor of Sciences (Veterinary), Professor, Head, Department of Diagnostics, Internal Non-Infectious Diseases, Pharmacology, Surgery and Obstetrics, Faculty of Veterinary Medicine


Yu. P. Orlov
Omsk State Medical University, Omsk
Russian Federation

Doctor of Sciences (Medicine), Professor of the Department of Anesthesiology and Emergency Medicin;

Е-mail: orlov-up@mail.ru

 



References

1. Kalogeris T, Baines Ch. P., Krenz M., Korthuis R. J. Ischemia/

2. Reperfusion // Compr Physiol. 2016. № 7 (1). P. 113–170.

3. Halladin N. L. Oxidative and Inflammatory Biomarkers of Ischemia and Reperfusion Injuries // Dan Med J. 2015. № 62 (4). P. B5054.

4. Grangera D. N., Kvietys P. R. Reperfusion Injury and Reactive Oxygen Species: The Evolution of a Concept // Redox Biol. 2015. № 6. P. 524–551.

5. Billah M., Ridiandries A., Allahwala U., Mudaliar H., Dona A., Hunyor S., Khachigian L. M. Bhindi R. Circulating Mediators of Remote Ischemic Preconditioning: Search for the Missing Link Between Non-Lethal Ischemia and Cardioprotection // Oncotarget. 2019. № 10 (2). P. 216–244.

6. Lee J. C., Park J. H., Kim I. H., Cho G. S., Ahn J. H., Tae H. J., Choi S. Y., Cho J. H., Kim D. W., Kwon Y. G. et al. Neuroprotection of Ischemic Preconditioning is Mediated by Thioredoxin 2 in the Hippocampal CA1 Region Following a Subsequent Transient Cerebral Ischemia // Brain Pathol. 2017. № 27 (3). P. 276–291.

7. Adibhatla R. M., Hatcher J. F. Lipid Oxidation and Peroxidation in CNS Health and Disease: from Molecular Mechanisms to Therapeutic Opportunities // Antioxid Redox Signal. 2010. № 12 (1). P. 125–169.

8. Shaha V. K., Shalia K. K. Reperfusing the Myocardium – a Damocles Sword // Indian Heart J. 2018. № 70 (3). P. 433–438.

9. Bagetti-Filho H. J., Sampaio F. J., Marques R. G., Pereira-Sampaio M. A. Different from Renal Artery only Clamping, Artery and Vein Clamping Causes a Significant Reduction in Number of Rat Glomeruli during Warm Ischemia // J Endourol. 2012. № 26 (10). P. 1335–1339.

10. Victoni T., Coelho F. R., Soares A. L., de Freitas A., Secher T., Guabiraba R., Erard F., de Oliveira-Filho R. M., Vargaftig B. B., Lauvaux G. et al. Local and Remote Tissue Injury upon Intestinal Ischemia and Reperfusion Depends on the TLR/MyD88 Signaling Pathway // Med Microbiol Immunol. 2010. № 199 (1). P. 35–42.

11. Yoshiya K., Lapchak P. H., Thai T. H., Kannan L., Rani P., Dalle Lucca J. J., Tsokos G. C. Depletion of Gut Commensal Bacteria Attenuates Intestinal Ischemia/Reperfusion Injury // Am J Physiol Gastrointest Liver Physiol. 2011. № 301 (6). P. G1020–G1030.

12. Braunersreuther V., Jaquet V. Reactive Oxygen Species in Myocardial Reperfusion Injury: From Physiopathology to Therapeutic Approaches // Curr Pharm Biotechnol. 2012. № 13. P. 97–114.

13. Chouchani E. T., Pell V. R., James A. M., Work L. M., Saeb-Parsy K., Frezza C., Krieg T., Murphy M. P. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury // Cell Metab. 2016. № 23. P. 254–263.

14. Conrad M., Angeli J. P., Vandenabeele P., Stockwell B. R. Regulated Necrosis: Disease Relevance and Therapeutic Opportunities // Nat Rev Drug Discov. 2016. № 15. P. 348–366.

15. Feng M., Wang H., Wang Q., Guan W. Matrix Metalloprotease 9 Promotes Liver Recovery from Ischemia and Reperfusion Injury // J Surg Res. 2013. № 180. P. 156–161.

16. Zorov D. B, Juhaszova M., Sollott S. T. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release // Physiol Rev. 2014. № 94 (3). P. 909–950.

17. Aon M. A., Stanley B. A., Sivakumaran V., Kembro J. M., O’Rourke B., Paolocci N., Cortassa SGlutathione/thioredoxin Systems Modulate Mitochondrial H2O2 Emission: an Experimental-Computational Study // J Gen Physiol. 2012. № 139 (6). P. 479–491.

18. Jaeschke H., Woolbright B. L. Current Strategies to minimize Hepatic Ischemia –Reperfusion Injury by Targeting Reactive Oxygen Species // Transplant Rev (Orlando). 2012. № 26 (2). P. 103–114.

19. Brand M. D. The Sites and Topology of Mitochondrial Superoxide Production // Exp Gerontol. 2010. № 45 (7–8). P. 466–472.

20. Hernansanz-Agustín P., Ramos E., Navarro E., Parada E., Sánchez-López N., Peláez-Aguado L., Cabrera-García J. D., Tello D. et al. Mitochondrial Complex I Deactivation is Related to Superoxideproduction in Acute Hypoxia // Redox Biol. 2017. № 12. P. 1040–1051.

21. Kurutas E. B. The Importance of Antioxidants which Play the Role in Cellular Response Against Oxidative/Nitrosative Stress: Current State // Nutr J. 2016. № 15. P. 71.

22. Imam M. U., Zhang Sh., Ma J., Wang H., Wang F. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress // Nutrients. 2017. № 9 (7). P. 671.

23. Sies H. Oxidative Stress: a Concept in Redox Biology and Medicine // Redox Biol. 2015. № 4. P. 180–183.

24. Krebs H. A. Some Aspects of the Energy Transformation in Living Matter // Br Med Bull. 1953. № 9 (2). P. 97–104.

25. Granger D. N., Kvietys P. R. Reperfusion Injury and Reactive Oxygen Species: The Evolution of a Concept // Redox Biol. 2015. № 6. P. 524–551.

26. Hawkins B. J., Levin M. D., Doonan P. J., Petrenko N. B., Davis C. W., Patel V. V., Madesh M. Mitochondrial Complex II Prevents Hypoxic but not Calcium- and Proapoptotic Bcl-2 Protein-Induced Mitochondrial Membrane Potential Loss // J Biol Chem. 2010. № 285 (34). P. 26494–26505.

27. Лукьянова Л. Д. Актуальные вопросы адаптации к гипоксии. Механизмы сигнала и их роль в системе регулирования // Патолог. физиология и эксперимент. терапия. 2011. № 1. С. 3–19.

28. Chance B., Williams G. R. A Method for the Localization of Sites for Oxidative Phosphorylation // Nature. 1955. № 176 (4475). P. 250–254.

29. Chance B., Williams G. R. Respiratory Enzymes in Oxidative

30. Phosphorylation. VI. The Effects of Adenosine Diphosphate on Azide-Treated Mitochondria // J Biol Chem. 1956. № 221 (1). P. 477–489.

31. Solberg R., Enot D., Deigner H. P., Koal T., Scholl-Bürgi S., Saugstad O. D., Keller M. Metabolomic Analyses of Plasma Reveals New Insights into Asphyxia and Resuscitation in Pigs // PLoS One. 2010. № 5 (3).

32. Chouchani E. T., Pell V. R., Gaude E. et al. Ischaemic Accumulation of Succinate Controls Reperfusion Injury through Mitochondrial ROS // Nature. 2014. № 515 (7527). P. 431–435.

33. Sahni P. V., Zhang J., Sosunov S., Galkin A., Niatsetskaya Z., Starkov A. et al. Krebs Cycle Metabolites and Preferential Succinate Oxidation Following Neonatal Hypoxic-Ischemic Brain Injury in Mice // Pediatr Res. 2018. № 83 (2). P. 491–497.

34. Sakamoto M., Takeshige K., Yasui H. et al. Cardio Protective Effect of Succinate against Ischemia/Reperfusion Injury // Surg Today. 1998. № 28 (5). P. 522–528.

35. Puchowicz M. A., Zechel J. L., Valerio J. et al. Neuroprotection in Diet-Induced Ketotic Rat Brain after Focal Ischemia // J Cereb Blood Flow Metab. 2008. No. 28 (12). P. 1907–1916.

36. Hamel D., Sanchez M., Duhamel F. et al. G-Protein-Coupled Receptor 91 and Succinate are Key Contributors in Neonatal Postcerebral Hypoxia Ischemia Recovery // Arterioscler Thromb Vasc Biol. 2014. № 34 (2). P. 285–293.

37. Pell V. R., Chouchani E. T., Frezza C. et al. Succinate metabolism: a new Therapeutic Target for Myocardial Reperfusion Injury // Cardiovasc Res. 2016. № 111 (2). P. 134–141.

38. Zhang J., Wang Y. T., Miller J. H., Day M. M., Munger J. C., Brookes P. S. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity // Cell Rep. 2018. № 23 (9). P. 2617–2628.

39. Belcher J. D., Chen C., Nguyen J., Milbauer L., Abdulla F., Alayash A. I. et al. Heme Triggers TLR4 Signaling Leading to Endothelial Cell Activation and Vasoocclusion in Murine Sickle Cell Disease // Blood. 2014. № 123. P. 377–390.

40. Belcher J. D., Beckman J. D., Balla G., Balla J., Vercellotti G. Heme Degradation and Vascular Injury // Antioxid Redox Signal. 2010. № 12 (2). P. 233–248.

41. Frati-Munari A. C. Medical Significance of Endothelial Glycocalyx // Arch Cardiol Mex. 2013. № 83 (4). P. 303–312.

42. Shaver C. M., Wickersham N., McNeil J. B., Nagata H., Miller A., Landstreet S. R. et al. Cell-free Hemoglobin Promotes Primary Graft Dysfunction through Oxidative Lung Endothelial Injury // JCI Insight. 2018. № 3 (2).

43. Panisello-Roselló A., Verde E., Lopez A., Flores M. et al. Сytoprotective Mechanisms in Fatty Liver Preservation against Cold Ischemia Injury: A Comparison between IGL-1 and HTK // Int J Mol Sci. 2018. № 19. P. 348.

44. Ambrosi N., Guerrieri D., Caro F., Sanchez F., Haeublein G., Casadei D. et al. Alpha Lipoic Acid: A Therapeutic Strategy that Tend to Limit the Action of Free Radicals in Transplantation // Int J Mol Sci. 2018. № 19. P. 102.

45. Ehinger J. F., Piel S., Ford R., Karlsson M. Cell-Permeable Succinate Prodrugs Bypass Mitochondrial Complex I Deficiency // Nat Commun. 2016. № 7.

46. Яроцкая Н. Н., Гостищев В. К., Косинец В. А., Самсонова И. В. Ультраструктурные и морфофункциональные изменения митохондриального аппарата гепатоцитов при экспериментальном распространенном перитоните // Новости хирургии. 2018. № 26 (1). С. 5–15.


Review

For citations:


Kolyadko A.V., Lang Ye.A., Govorova N.V., Boyko T.V., Orlov Yu.P. PARADOXES OF REPERFUSION IN THE PRACTICE OF CRITICAL CONDITIONS: POSSIBLE SOLUTION. Vestnik SurGU. Meditsina. 2020;(3 (45)):69-75. (In Russ.) https://doi.org/10.34822/2304-9448-2020-3-69-75

Views: 175


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3447 (Online)