MORPHOMETRIC DATA SET CHARACTERISTICS AND STRUCTURE SUBSTANTIATION WITH PROSTATE GLAND MAGNETIC RESONANCE IMAGING RESULTS
https://doi.org/10.35266/2949-3447-2025-2-2
Abstract
The purpose is to substantiate the characteristics, develop a data set for testing and monitoring the quality of artificial intelligence (AI) services for prostate morphometry on magnetic resonance imaging (MRI) results. We carried out a search of scientific literature in PubMed and RINC databases with the search depth, mostly not exceeding 10 years. In the structure of malignant neoplasm morbidity among the male population, tumors steadily rank first in Russia and second in the global perspective. In Russia in 2013, the corresponding morbidity was 34.62 cases per 100 thousand people, and in 2023, it increased to 50.33 cases. There is a steady annual increase in the absolute number of first-time diagnoses of prostate cancer. There was a certain decline in this indicator during the COVID-19 pandemic, but now the growth has restarted. This type of pathology ranks third (9.0%) in the structure of mortality from malignant neoplasms among the male population. MRI has a special role in screening and diagnosis of prostate diseases. The varying levels of doctors’ competence and the labor-intensive processing, interpretation, and measurements often limit the implementation of MRI, because of the time needed to describe the research results. Computer vision technologies can serve as one of the potential ways of solving this problem. Both the lack of data itself and defects in data markup limit the introduction of AI technologies in practical healthcare.
About the Authors
N. M. NasibianRussian Federation
Postgraduate, Radiologist
T. M. Bobrovskaya
Russian Federation
Junior Researcher
A. V. Vladzymyrskyy
Russian Federation
Doctor of Sciences (Medicine), Deputy Head of the Research Work Department
References
1. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность) / под ред. А. Д. Каприна, В. В. Старинского, А. О. Шахзадовой. М. : МНИОИ им. П. А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024. 276 с.
2. Bergengren O., Pekala K. R., Matsoukas K. et al. 2022 Update on prostate cancer epidemiology and risk factors – A systematic review // European urology. 2023. Vol. 84, no. 2. P. 191–206. https://doi.org/10.1016/j.eururo.2023.04.021.
3. Состояние онкологической помощи населению России в 2023 году / под ред. А. Д. Каприна, В. В. Старинского, А. О. Шахзадовой. М. : МНИОИ им. П. А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024. 262 с.
4. Fazekas T., Shim S. R., Basile G. et al. Magnetic resonance imaging in prostate cancer screening: A systematic review and metaanalysis // JAMA Oncology. 2024. Vol. 10, no. 6. P. 745–754. https://doi.org/10.1001/jamaoncol.2024.0734.
5. Wang Y., Wu Y., Zhu M. et al. The diagnostic performance of tumor stage on MRI for predicting prostate cancer-positive surgical margins: A systematic review and meta-analysis // Diagnostics (Basel). 2023. Vol. 13, no. 15. https://doi.org/10.3390/diagnostics13152.
6. Васильев Ю. А., Омелянская О. В., Владзимирский А. В. и др. Сравнение мультипараметрического и бипараметрического протоколов магнитно-резонансной томографии для выявления рака предстательной железы рентгенологами с различным опытом // Digital Diagnostics. 2023. Т. 4, № 4. С. 455−466. https://doi.org/10.17816/DD322816.
7. Alqahtani S. Systematic review of AI-Assisted MRI in prostate cancer diagnosis: Enhancing accuracy through second opinion tools // Diagnostics (Basel). 2024. Vol. 14, no. 22. https://doi.org/10.3390/diagnostics14222576.
8. Reinhardt C., Briody H., MacMahon P. J. AI-accelerated prostate MRI: a systematic review // British Journal of Radiology. 2024. Vol. 97, no. 1159. P. 1234–1242. https://doi.org/10.1093/bjr/tqae093.
9. Владзимирский А. В., Васильев Ю. А., Арзамасов К. М. и др. Компьютерное зрение в лучевой диагностике: первый этап Московского эксперимента : моногр. 2-е изд., перераб. и доп. М. : ООО «Издательские решения», 2023. 388 с.
10. Sunoqrot M. R. S., Saha A., Hosseinzadeh M. et al. Artificial intelligence for prostate MRI: Open datasets, available applications, and grand challenges // European Radiology Experimental. 2022. Vol. 6. https://doi.org/10.1186/s41747-022-00288-8.
11. Бобровская Т. М., Васильев Ю. А., Никитин Н. Ю. и др. Подходы к формированию наборов данных в лучевой диагностике // Врач и информационные технологии. 2023. № 4. С. 14–23. https://doi.org/10.25881/18110193_2023_4_14.
12. Wu M., He X., Li F. et al. Weakly supervised volumetric prostate registration for MRI-TRUS image driven by signed distance map // Computers in biology and medicine. 2023. Vol. 163. https://doi.org/10.1016/j.compbiomed.2023.107150.
13. Couchoux T., Jaouen T., Melodelima-Gonindard C. et al. Performance of a Region of Interest-based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database-CAD-FIRST Study // European Urology Oncology. 2024. Vol. 7, no. 5. P. 1113–1122. https://doi.org/10.1016/j.euo.2024.03.003.
14. Tibrewala R., Dutt T., Tong A. et al. FastMRI Prostate: A public, biparametric MRI dataset to advance machine learning for prostate cancer imaging // Scientific data. 2024. Vol. 11. https:// doi.org/10.1038/s41597-024-03252-w.
15. Adams L. C., Makowski M. R., Engel G. et al. Prostate158 – An expert-annotated 3T MRI dataset and algorithm for prostate cancer detection // Computers in biology and medicine. 2022. Vol. 148. https://doi.org/10.1016/j.compbiomed.2022.105817.
16. Kou W., Marshall H., Chiu B. Boundary-aware semantic clustering network for segmentation of prostate zones from T2-weighted MRI // Physics in Medicine & Biology. 2024. Vol. 69, no. 17. https://doi.org/10.1088/1361-6560/ad6ace.
17. Li W., Zheng B., Shen Q. et al. Adaptive window adjustment with boundary DoU loss for cascade segmentation of anatomy and lesions in prostate cancer using bpMRI // Neural Networks. 2025. Vol. 181. https://doi.org/10.1016/j.neunet.2024.106831.
18. Shen Q., Zheng B., Li W. et al. MixUNETR: A U-shaped network based on W-MSA and depth-wise convolution with channel and spatial interactions for zonal prostate segmentation in MRI // Neural Networks. 2025. Vol. 181. https://doi.org/10.1016/j.neunet.2024.106782.
19. Saha A., Bosma J. S., Twilt J. J. et al. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): An international, paired, non-inferiority, confirmatory study // The Lancet. Oncology. 2024. Vol. 25, no. 7. P. 879–887. https://doi.org/10.1016/S1470-2045(24)00220-1.
20. Litjens G., Debats O., Barentsz J. et al. Computer-aided detection of prostate cancer in MRI // IEEE Transactions on Medical Imaging. 2014. Vol. 33, no. 5. P. 1083–1092. https://doi.org/10.1109/TMI.2014.2303821.
21. Armato S. G., Huisman H., Drukker K. et al. PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images // Journal of Medical Imaging. 2018. Vol. 5, no. 4. https://doi.org/10.1117/1.JMI.5.4.044501.
22. Cuocolo R., Stanzione A., Castaldo A. et al. Quality control and whole-gland, zonal and lesion annotations for the PROSTATEx challenge public dataset // European Journal of Radiology. 2021. Vol. 138. https://doi.org/10.1016/j.ejrad.2021.109647.
23. Holmlund W., Simkó A., Söderkvist K. et al. ProstateZones – Segmentations of the prostatic zones and urethra for the PROSTATEx dataset // Scientific Data. 2024. Vol. 11. https://doi.org/10.1038/s41597-024-03945-2.
24. Четвериков С. Ф., Арзамасов К. М., Андрейченко А. Е. и др. Подходы к формированию выборки для контроля качества работы систем искусственного интеллекта в медико-биологических исследованиях // Современные технологии в медицине. 2023. Т. 15, № 2. С. 19–27. https://doi.org/10.17691/stm2023.15.2.02.
25. Васильев Ю. А., Насибян Н. М., Владзимирский А. В. и др. MosMedData: MPT малого таза с морфометрическими показателями предстательной железы : патент 2025620045 Рос. Федерация № 2024626323 ; заявл. 20.12.2024 ; опубл. 10.01.2025. URL: https://elibrary.ru/download/elibrary_80278348_87320077. PDF (дата обращения: 10.04.2025).
26. Васильев Ю. А., Владзимирский А. В., Омелянская О. В. и др. Обзор метаанализов о применении искусственного интеллекта в лучевой диагностике // Медицинская визуализация. 2024. Т. 28, № 3. С. 22–41. https://doi.org/10.24835/1607-0763-1425.
27. Meglič J., Sunoqrot M. R. S., Bathen T. F. et al. Label-set impact on deep learning-based prostate segmentation on MRI // Insights into imaging. 2023. Vol. 14. https://doi.org/10.1186/s13244-023-01502-w.
28. Fassia M.-K., Balasubramanian A., Woo S. et al. Deep learning prostate MRI segmentation accuracy and robustness: A systematic review // Radiology: Artificial intelligence. 2024. Vol. 6, no. 4. https://doi.org/10.1148/ryai.230138.
Review
For citations:
Nasibian N.M., Bobrovskaya T.M., Vladzymyrskyy A.V. MORPHOMETRIC DATA SET CHARACTERISTICS AND STRUCTURE SUBSTANTIATION WITH PROSTATE GLAND MAGNETIC RESONANCE IMAGING RESULTS. Vestnik SurGU. Meditsina. 2025;18(2):14-22. (In Russ.) https://doi.org/10.35266/2949-3447-2025-2-2