EFFECT OF LITHIUM CHLORIDE ON ENDOTHELIAL CELLS IN PATIENTS WITH SEVERE CONCOMITANT INJURY COMPLICATED BY SYSTEMIC INFLAMMATORY RESPONSE
https://doi.org/10.34822/2304-9448-2021-1-87-91
Abstract
The study aims to research the protective effect of lithium chloride solution on endotheliocytes in cell culture under conditions of incubation with the blood serum of patients suffering from systemic inflammatory response
syndrome (SIRS) secondary to severe concomitant injury. Material and methods. We used serum of five patients with SIRS, which occurred in presence of severe concomitant injury, and blood serum of five healthy donors. Endothelial cells of the EA.hy926 line were incubated with the blood serum of healthy and sick patients. Lithium chloride was added to the cell samples at a concentration of 0.01, 0.1, 1, and 10 mmol/l. After incubation, the cells were removed with a Trypsin-Versene Solution, fixed with 70% ethanol, and stained with propidium iodide. Cells containing fragmented genomic DNA were analyzed using flow cytometry. Results. It was found that toxic serum inhibited phosphorylation of glycogen synthase kinase 3β (GSK-3β) in endotheliocytes, caused cleavage of Vascular endothelial (VE)-cadherin and a decrease in the amount of claudine and actin, which caused the destruction of
intercellular contacts of the endothelial monolayer and an increase in endotheliocyte apoptosis. Incubation of a monolayer of endothelial cells of the EA.hy926 line with lithium chloride at concentrations of 1 and 10 mmol/l
significantly prevented the disassembly of claudine, actin, and (VE)-cadherin, halved the intensity of endotheliocyte apoptosis, and stimulated the phosphorylation of GSK-3β.
About the Authors
O. A. GrebenchikovRussian Federation
Doctor of Sciences (Medicine), Head, Organoprotection Laboratory
E-mail: oleg.grebenchikov@yandex.ru
M. D. Prokofyev
Russian Federation
Postgraduate, Department of Pathophysiology
E-mail: mdprokofyev@gmail.com
V. T. Dolgikh
Russian Federation
Honoured Science Worker of the Russian Federation, Doctor of Sciences (Medicine), Professor, Chief Researcher, Laboratory of Clinical Pathophysiology of Critical States
E-mail: prof_dolgih@mail.ru
References
1. Дисфункция эндотелия. Патогенетическое значение и методы коррекции / под ред. Н. Н. Петрищева СПб. : ИИЦ ВМА, 2007. 296 c.
2. Дремина Н. Н., Шурыгин М. Г., Шурыгина И. А. Эндотелины в норме и патологии // Междунар. журн. приклад. и функционал. исслед. 2018. № 10-2. С. 210–214.
3. Васина Л. В., Петрищев Н. Н., Власов Т. Т. Эндотелиальная дисфункция и ее основные маркеры // Регионарное кровообращение и микроциркуляция. 2017. Т. 16, № 1. С. 4–15.
4. Giles L. V., Tebbutt S. J., Carlsten C., Koehle M. S. The Effect of
5. Low and High-Intensity Cycling in Diesel Exhaust on Flow- Mediated Dilation, Circulating Nox, Endothelin-1 and Blood Pressure // PLoSONE. 2018. Vol. 13, № 2. P. e0192419.
6. Winn R. K., Harlan J. M. The role of Endothelial Cell Apoptosis in Inflammatory and Immune Diseases // J Thrombosis and Haemostasis. 2005. Vol. 3, № 8. P. 1815–1824. DOI 10.1111/j.1538-7836.2005.01378.x.
7. Лопатин З. В., Василенко В. С., Карповская Е. Б. Роль повреждающих эндотелий факторов в патогенезе кардиомиопатии перенапряжения у спортсменов игровых видов спорта // Педиатр. 2018. Т. 9, № 6. С. 57–62. DOI 10.17816/PED9657-62.
8. Dubei M. J., Grosh R., Chatterjee S., Biswas H., Dubei S. COVID-19 and Addiction // Diabetes Metab Syndr. 2020. Vol. 14, No. 5. P. 817–823.
9. Gipson I. K. Age-related Changes and Diseases of the Ocular Surface and Cornea // Invest Ophthalmol Vis Sci. 2013. Vol. 54, № 14. P. 48–53. DOI 10.1167/iovs.13-12840.
10. Opal S., van der Poll T. Endothelial Barrier Dysfunction in Septic Shock // J Intern Med. 2014. Vol. 277, № 3. P. 277–293. DOI 10.1111/joim.12331.
11. Аветисов С. Э., Мамиконян В. Р., Труфанов С. В., Осипян Г. А. Селективный принцип современных подходов в кератопластике // Вестник офтальмологии. 2013. Т. 129, № 5. С. 97–103.
12. Дорофиенко Н. Н. Роль сосудистого эндотелия в организме и универсальные механизмы изменения его активности : обзор лит. // Бюл. физиологии и патологии дыхания. 2018. № 68. С. 107–116. DOI 10.12737|article_Sb1a0351210289.18315210.
13. Bourraindeloup М., Adamy С., Candiani G., Cailleret М., Bourin М. С., Badoual Т., Su J. В., Adubeiro S., Roudot-Thoraval F., Dubois-Rande J. L. N-acetylcysteine Treatment Normalizes Serum Tumor Necrosis Factor-Alpha Level and Hinders the Progression of Cardiac Injury in Hypertensive
14. Rats // Circulation. 2014. Vol. 110. P. 2003–2009.
15. Гребенчиков О. А., Лобанов А. В., Шайхутдинова Э. Р. Кузовлев и др. Кардиопротекторные свойства хлорида лития на модели инфаркта миокарда у крыс // Патология кровообращения и кардиохирургия. 2019. Т. 23, № 2. С. 43–49. DOI 10.21688/1681-3472-2019-2-43-49.
16. Romaschenko V. P., Zinovkin, Galkin I. I. Low Concentrations of Uncouplers of Oxidative Phosphorylation Prevent Inflammatory Activation of Endothelial Cells by tumor Necrosis Factor // Biochemistry. 2015. Vol. 80, № 5. P. 610–619. DOI 10.1134/50006297915050144.
17. Ramirez S. H., Fan S., Dykstra H. et al. Inhibition of Glycogen Synthase Kinase 3β Promotes Tight Junction Stability in Brain Endothelial Cells by Halt-Life Extension of Occludin and Claudin-5 // PLoS One. 2013. Vol. 8, № 2. P. e55972. DOI 10.1371/journal.pone.0055972.
18. Chosh S., Hayden M. S. New Regulators of NFkappaβ Ininflammation // Nat Rev Immunol. 2008. Vol. 8. P.837–848. DOI 10.1038/nri2423.
19. Wang H. M., Zhang T., Li Q. et al. Inhibition of Glycogen Synthase Kinase-3β by Lithum Chloride Superesses6-Hydroxydopamine-Induced Infammatory Response in Primary Cultured Astrocytes // Neurochem Int. 2013. № 63. P. 345–353. DOI 10.1016/j.neuint. 2013.07.003.
Review
For citations:
Grebenchikov O.A., Prokofyev M.D., Dolgikh V.T. EFFECT OF LITHIUM CHLORIDE ON ENDOTHELIAL CELLS IN PATIENTS WITH SEVERE CONCOMITANT INJURY COMPLICATED BY SYSTEMIC INFLAMMATORY RESPONSE. Vestnik SurGU. Meditsina. 2021;(1 (47)):87-91. (In Russ.) https://doi.org/10.34822/2304-9448-2021-1-87-91