RISK FACTORS AND PATHOGENESIS OF DEGENERATIVE AORTIC DISEASES
https://doi.org/10.34822/2304-9448-2020-2-73-79
Abstract
The study aims to analyze the published data on pathogenesis for the development of degenerative aortic
valve stenosis as a possible target for conservative therapy. Material and methods. Literary sources from various databases such as PubMed, Scopus, Cochrane Database of Systematic Reviews with a search depth of 15 years are selected. “Degenerative aortic valve stenosis” and “aortic valve” are used as keywords. Results. Degenerative aortic valve stenosis is a multi-stage and multifactorial process. The pathological process includes stages: endothelial dysfunction and damage, lipid accumulation, aseptic inflammation, maladaptive myofibroblastic, and osteogenic transformation of valvular interstitial cells, which ultimately leads to fibrosis and calcification of the aortic valve. Each of the stages has its own target in order to slow down the pathological process.
About the Authors
V. V. ChugunovRussian Federation
Postgraduate, Department of Cardiology, District Cardiology Dispensary
A. N. Molchanov
Russian Federation
Candidate of Sciences (Medicine), Associate Professor, Department of Cardiology, Medical Institute, Cardio-vascular Surgeon
L. A. Naumova
Russian Federation
Doctor of Sciences (Medicine), Professor of the Department of Pathophysiology and General Pathology, Medical Institute
References
1. Hull M. C., Morris C. G., Pepine C. J., Mendenhall N. Valvular
2. Dysfunction and Carotid, Subclavian, and Coronary Artery Disease in Survivors of Hodjkin Lymphoma Treated with Radiation Therapy
3. // JAMA 2003. No. 290. Р. 2831–2837.
4. Kon N. D., Westaby S., Amarasena N., Pillai R., Cordell A. R. Comparison
5. оf Implantation Techniques Using Freestyle Stentless Porcine Aortic Valve // The Annals of Thoracic Surgery. 1995. No. 59. P. 857.
6. Iung B., Baron G., Butchart E. G. et al. A Prospective Survey of Patients with Valvular Heart Disease in Europe: the Euro Heart Survey on Valvular Heart Disease // European Heart Journal. 2003. No. 24. Р. 1231–1243.
7. Yutzey K. E., Demer L. L., Body S. C. et al. Calcific Aortic Valve Disease:
8. a Consensus Summary from the Alliance of Investigators on Calcific
9. Aortic Valve Disease // Arteriosclerosis, Thrombosis and Vascular
10. Biology. 2014. No. 34. 2387–2393.
11. Hutcheson J. D., Aikawa E., Merryman W. D. Potential Drug Targets
12. for Calcific Aortic Valve Disease // Nature Reviews Cardiology. 2014.
13. No. 11. Р. 218–231.
14. Gould S. T., Srigunapalan S., Simmons C. A., Anseth K. S. Hemodynamic and Cellular Response Feedback in Calcific Aortic Valve Disease // Circulation Research. 2013. No. 113. Р. 186–197.
15. Wang H., Leinwand L. A., Anseth K. S. Cardiac Valve Cells and their Microenvironment – Insights from In Vitro Studies // Nature Reviews Cardiology. 2014. No. 11. Р. 715–727. DOI 10.1038/ nrcardio.2014.162.
16. Capoulade R., Mahmut A., Tastet L. et al. Impact of Plasma Lp-PLA2
17. Activity on the Progression of Aortic Stenosis: the PROGRESSA study // JACC Cardiovascular Imaging. 2014. No. 8. Р. 26–33.
18. Rutkovskiy A., Malashicheva A., Sullivan G. et al. Valve InterstitiCalcification // Journal of the American Heart Association. 2017. No. 6. DOI 10.1161/JAHA.117.006339.
19. Cote N., Pibarot P., Clavel M. A. Incidence, Risk Factors, Clinical Impact, and Management of Bioprosthesis Structural Valve Degeneration // Current Opinion in Cardiology. 2017. No. 32. Р. 123–129. DOI 10.1097/HCO.0000000000000372.
20. Yip C. Y., Simmons C. A. The Aortic Valve Microenvironment and its Role in Calcific Aortic Valve Disease // Cardiovascular Pathology. 2011. No. 20. Р. 177–182.
21. Mathieu P., Boulanger M. C., Bouchareb R. Molecular Biology of Calcific Aortic Valve Disease: Towards New Pharmacological Therapies // Expert Review Cardiovascular Therapy. 2014. No. 12. Р. 851–862.
22. Gould S. T., Srigunapalan S., Simmons C. A. et al. Hemodynamic and Cellular Response Feedback in Calcific Aortic Valve Disease // Circulation Research. 2013. No. 113. Р. 186–197. DOI 10.1161/ CIRCRESAHA.112.300154.
23. Dweck M. R., Boon N. A., Newby D. E. Calcific Aortic Stenosis a Disease
24. of the Valve and the Myocardium // Journal of the American College of Cardiology. 2012. No. 60. Р. 1854–1863. DOI 10.1016/j.jacc.2012.02.093.
25. Michelena H. I., Prakash S. K., Corte A. D. et al. Bicuspid Aortic
26. Valve: Identifying Knowledge Gaps and Rising to the Challenge from the International Bicuspid Aortic Valve Consortium (BAVCon) // Circulation. 2014. No. 129. Р. 2691–2704. DOI 10.1161/ CIRCULATIONAHA.113.007851.
27. Coffey S., Cox B., Williams M. J. The Prevalence, Incidence Progression, and Risks of Aortic Valve Sclerosis: a Systematic Review and Meta-Analysis // Journal of the American College of Cardiology. No. 63 (25). Р. 2852–2861. DOI 10.1016/j.jacc.2014.04. 018.
28. Witt W., Jannasch A., Burkhard D. et al. Sphingosine-1-Phosphate Induces Contraction of Valvular Interstitial Cells from Porcine Aortic Valves // Cardiovascular Research. 2012. No. 93. Р. 490–497. DOI 10.1093/cvr/cvs002.
29. Chen J. H., Chen W. L., Sider K. L. et al. β-Catenin Mediates Mechanically Regulated, Transforming Growth Factor-β1-Induced Myofibroblast Differentiation of Aortic Valve Interstitial Cells. Arteriosclerosis // Thrombosis and Vascular Biology. 2011. No. 31. Р. 590–597. DOI 10.1161/ATVBAHA.110.220061.
30. Wang H., Tibbitt M. W., Langer S. J. et al. Hydrogels Preserve Native
31. Phenotypes of Valvular Fibroblasts through an Elasticity-Regulated PI3K/AKT Pathway // Proceedings of the National Academy of Sciences. No. 110 (48). Р. 19336–19341. DOI 10.1073/pnas. 1306369110.
32. Liu J., Khalil R. A. Matrix Metalloproteinase Inhibitors as\ Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders // Progress in Molecular Biology and Translational Science. 2017. Р. 355–420. DOI 10.1016/ bs. pmbts.2017.04.003.
33. Aikawa E., Aikawa M., Libby P. et al. Arterial and Aortic Valve Calcification Abolished by Elastolytic Cathepsin S Deficiency in Chronic Renal Disease // Circulation. No. 119 (13). Р. 1785–1794. DOI 10.1161/ CIRCULATIONAHA.108.827972.
34. Perrotta I., Russo E., Camastra C. et al. New Evidence for a Critical Role of Elastin in Calcification of Native Heart Valves: Immunohistochemical and Ultrastructural Study with Literature Review // Histopathology. No. 59 (3). Р. 504–513. DOI 10.1111/j.1365- 2559.2011.03977.x.
35. Misfeld M., Sievers H. H. Heart Valve Macro- and Microstructure // Philosophical Transactions of the Royal Society B: Biological
36. Sciences. No. 362 (1484). Р. 1421–1436. DOI 10.1098/rstb.2007.2125.
37. Perrotta I., Moraca F. M., Sciangula A. et al. HIF-1α and VEGF:
38. Immunohistochemical Profile and Possible Function in Human Aortic Valve Stenosis // Ultrastructural Pathology. No. 39 (3). Р. 198–206. DOI 10.3109/ 01913123.2014.991884.
39. Syvaranta S., Helske S., Laine M., et al. Vascular Endothelial Growth Factor-Secreting Mast Cells and Myofibroblasts: a Novel Self-Perpetuating Angiogenic Pathway in Aortic Valve Stenosis // Arteriosclerosis, Thrombosis and Vascular Biology. No. 30 (6). Р. 1220–1227. DOI 10.1161/ATVBAHA.109.198267.
40. Cote N., Mahmut A., Bosse Y. et al. Inflammation is Associated with the Remodeling of Calcific Aortic Valve Disease // Inflammation. No. 36 (3). Р. 573–581. DOI 10.1007/s10753-012-9579-6.
41. Dweck M. R., Boon N. A., Newby D. E. Calcific Aortic Stenosis a Disease of the Valve and the Myocardium // Journal of the American College of Cardiology. No. 60 (19). Р. 1854–1863. DOI 10.1016/j. jacc.2012.02.093.
42. Dorman G., Cseh S., Hajdu I. et al. Matrix Metalloproteinase Inhibitors: a Critical Appraisal of Design Principles and Proposed Therapeutic Utility // Drugs. No. 70 (8). Р. 949–964. DOI 10.2165/11318390-000000000-00000.
43. Peltonen T., Ohukainen P., Ruskoaho H. et al. Targeting Vasoactive Peptides for Managing Calcific Aortic Valve Disease // Annals of Internal Medicine. No. 49 (1). Р. 63–74. DOI 10.1080/07853890.2016.1231933.
44. Karnik S. S., Unal H., Kemp J. R. et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli // Pharmacological Reviews. No. 67. Р. 754–819. DOI 10.1124/pr.114.010454.
45. Helske S., Lindstedt K. A., Laine M. et al. Induction of Local Angiotensin II Producing Systems in Stenotic Aortic Valves // Journal of the American College of Cardiology. No. 44 (9). Р. 1859–1866. DOI 10.1016/j.jacc.2004.07.054.
46. Bull S., Loudon M., Francis J. M. et al. A Prospective, Double-Blind,
47. Randomized Controlled Trial of the Angiotensin-Converting Enzyme Inhibitor Ramipril in Aortic Stenosis (RIAS trial) // European Heart Journal – Cardiovascular Imaging. No. 16 (8). Р. 834–841. DOI 10.1093/ehjci/jev043.
48. Nadir M. A., Wei L., Elder D. H. et al. Impact of Renin-Angiotensin
49. System Blockade Therapy on Outcome in Aortic Stenosis // J Journal of the American College of Cardiology. No. 58 (6). Р. 570–576. DOI 10.1016/j.jacc.2011.01.063.
50. Helske-Suihko S., Laine M., Lommi J. et al. Is Blockade of the Renin-
51. Angiotensin System Able to Reverse the Structural and Functional
52. Remodeling of the Left Ventricle in Severe Aortic Stenosis? // Journal of Cardiovascular Pharmacology. No. 65 (3). Р. 233–240. DOI 10.1097/FJC.0000000000000182.
Review
For citations:
Chugunov V.V., Molchanov A.N., Naumova L.A. RISK FACTORS AND PATHOGENESIS OF DEGENERATIVE AORTIC DISEASES. Vestnik SurGU. Meditsina. 2020;(2 (44)):73-79. (In Russ.) https://doi.org/10.34822/2304-9448-2020-2-73-79