ФАКТОРЫ РИСКА И ПАТОГЕНЕЗ РАЗВИТИЯ ДЕГЕНЕРАТИВНОГО АОРТАЛЬНОГО ПОРОКА
https://doi.org/10.34822/2304-9448-2020-2-73-79
Аннотация
Цель – на основании опубликованных данных проанализировать факторы риска и патогенетические механизмы формирования дегенеративного аортального стеноза, а также возможность рассмотрения их как мишени для проведения консервативной терапии. Материал и методы. В работе использованы базы данных PubMed, Scopus, Cochrane Database of Systematic Reviews и др. с глубиной поиска 15 лет. Ключевые слова для поиска: дегенеративный стеноз аортального клапана, аортальный клапан. Результаты. В современной литературе дегенеративный стеноз аортального клапана рассматривается как многофакторный и многоступенчатый процесс, включающий такие этапы, как повреждение и развитие эндотелиальной дисфункции, накопление липидов, развитие асептического воспаления и дезадаптивной миофибробластической и остеогенной трансформации клапанных интерстициальных клеток, ведущей к фиброзу и кальцификации аортального клапана. При этом на
каждом из этапов имеется своя мишень для замедления развития патологического процесса.
Об авторах
В. В. ЧугуновРоссия
аспирант кафедры кардиологии, Медицинский институт, Сургутский государственный университет; врач – сердечно-сосудистый хирург;
Е-mail: ruapostol@gmail.com
А. Н. Молчанов
Россия
кандидат медицинских наук, доцент кафедры кардиологии, Медицинский институт, сердечно-сосудистый хирург
Л. А. Наумова
Россия
доктор медицинских наук, профессор кафедры патофизиологии и общей патологии, Медицинский институт
E-mail: naumovala@yandex.ru
Список литературы
1. Hull M. C., Morris C. G., Pepine C. J., Mendenhall N. Valvular Dysfunction and Carotid, Subclavian, and Coronary Artery Disease in Survivors of Hodjkin Lymphoma Treated with Radiation Therapy // JAMA 2003. No. 290. Р. 2831–2837.
2. Kon N. D., Westaby S., Amarasena N., Pillai R., Cordell A. R. Comparison оf Implantation Techniques Using Freestyle Stentless Porcine Aortic Valve // The Annals of Thoracic Surgery. 1995. No. 59. P. 857.
3. Iung B., Baron G., Butchart E. G. et al. A Prospective Survey of Patients with Valvular Heart Disease in Europe: the Euro Heart Survey on Valvular Heart Disease // European Heart Journal. 2003. No. 24. Р. 1231–1243.
4. Yutzey K. E., Demer L. L., Body S. C. et al. Calcific Aortic Valve Disease: a Consensus Summary from the Alliance of Investigators on Calcific Aortic Valve Disease // Arteriosclerosis, Thrombosis and Vascular Biology. 2014. No. 34. 2387–2393.
5. Hutcheson J. D., Aikawa E., Merryman W. D. Potential Drug Targets for Calcific Aortic Valve Disease // Nature Reviews Cardiology. 2014. No. 11. Р. 218–231.
6. Gould S. T., Srigunapalan S., Simmons C. A., Anseth K. S.
7. Hemodynamic and Cellular Response Feedback in Calcific Aortic Valve Disease // Circulation Research. 2013. No. 113. Р. 186–197.
8. Wang H., Leinwand L. A., Anseth K. S. Cardiac Valve Cells and their Microenvironment – Insights from In Vitro Studies // Nature Reviews Cardiology. 2014. No. 11. Р. 715–727. DOI 10.1038/ nrcardio.2014.162.
9. Capoulade R., Mahmut A., Tastet L. et al. Impact of Plasma Lp-PLA2
10. Activity on the Progression of Aortic Stenosis: the PROGRESSA study
11. // JACC Cardiovascular Imaging. 2014. No. 8. Р. 26–33.
12. Rutkovskiy A., Malashicheva A., Sullivan G. et al. Valve Interstitial Cells: the Key to Understanding the Pathophysiology of Heart Valve Calcification // Journal of the American Heart Association. 2017. No. 6. DOI 10.1161/JAHA.117.006339.
13. Cote N., Pibarot P., Clavel M. A. Incidence, Risk Factors, Clinical Impact, and Management of Bioprosthesis Structural Valve Degeneration // Current Opinion in Cardiology. 2017. No. 32. Р. 123–129. DOI 10.1097/HCO.0000000000000372.
14. Yip C. Y., Simmons C. A. The Aortic Valve Microenvironment and its
15. Role in Calcific Aortic Valve Disease // Cardiovascular Pathology. 2011. No. 20. Р. 177–182.
16. Mathieu P., Boulanger M. C., Bouchareb R. Molecular Biology of
17. Calcific Aortic Valve Disease: Towards New Pharmacological Therapies
18. // Expert Review Cardiovascular Therapy. 2014. No. 12. Р. 851–862.
19. Gould S. T., Srigunapalan S., Simmons C. A. et al. Hemodynamic and Cellular Response Feedback in Calcific Aortic Valve Disease // Circulation Research. 2013. No. 113. Р. 186–197. DOI 10.1161/ CIRCRESAHA.112.300154.
20. Dweck M. R., Boon N. A., Newby D. E. Calcific Aortic Stenosis a Disease of the Valve and the Myocardium // Journal of the American College of Cardiology. 2012. No. 60. Р. 1854–1863. DOI 10.1016/j.jacc.2012.02.093.
21. Michelena H. I., Prakash S. K., Corte A. D. et al. Bicuspid Aortic
22. Valve: Identifying Knowledge Gaps and Rising to the Challenge
23. from the International Bicuspid Aortic Valve Consortium (BAVCon) // Circulation. 2014. No. 129. Р. 2691–2704. DOI 10.1161/ CIRCULATIONAHA.113.007851.
24. Coffey S., Cox B., Williams M. J. The Prevalence, Incidence, Progression, and Risks of Aortic Valve Sclerosis: a Systematic Review and Meta-Analysis // Journal of the American College of Cardiology. No. 63 (25). Р. 2852–2861. DOI 10.1016/j.jacc.2014.04. 018.
25. Witt W., Jannasch A., Burkhard D. et al. Sphingosine-1-Phosphate
26. Induces Contraction of Valvular Interstitial Cells from Porcine Aortic Valves // Cardiovascular Research. 2012. No. 93. Р. 490–497. DOI 10.1093/cvr/cvs002.
27. Chen J. H., Chen W. L., Sider K. L. et al. β-Catenin Mediates Mechanically Regulated, Transforming Growth Factor-β1-Induced Myofibroblast Differentiation of Aortic Valve Interstitial Cells. Arteriosclerosis // Thrombosis and Vascular Biology. 2011. No. 31. Р. 590–597. DOI 10.1161/ATVBAHA.110.220061.
28. Wang H., Tibbitt M. W., Langer S. J. et al. Hydrogels Preserve Native Phenotypes of Valvular Fibroblasts through an Elasticity-Regulated PI3K/AKT Pathway // Proceedings of the National Academy of Sciences. No. 110 (48). Р. 19336–19341. DOI 10.1073/pnas. 1306369110.
29. Liu J., Khalil R. A. Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders // Progress in Molecular Biology and Translational Science. 2017. Р. 355–420. DOI 10.1016/ bs. pmbts.2017.04.003.
30. Aikawa E., Aikawa M., Libby P. et al. Arterial and Aortic Valve Calcification Abolished by Elastolytic Cathepsin S Deficiency in Chronic Renal Disease // Circulation. No. 119 (13). Р. 1785–1794. DOI 10.1161/ CIRCULATIONAHA.108.827972.
31. Perrotta I., Russo E., Camastra C. et al. New Evidence for a Critical Role of Elastin in Calcification of Native Heart Valves: Immunohistochemical and Ultrastructural Study with Literature Review // Histopathology. No. 59 (3). Р. 504–513. DOI 10.1111/j.1365-2559.2011.03977.x.
32. Misfeld M., Sievers H. H. Heart Valve Macro- and Microstructure
33. // Philosophical Transactions of the Royal Society B: Biological Sciences. No. 362 (1484). Р. 1421–1436. DOI 10.1098/rstb.2007.2125.
34. Perrotta I., Moraca F. M., Sciangula A. et al. HIF-1α and VEGF: Immunohistochemical Profile and Possible Function in Human Aortic Valve Stenosis // Ultrastructural Pathology. No. 39 (3). Р. 198–206. DOI 10.3109/ 01913123.2014.991884.
35. Syvaranta S., Helske S., Laine M., et al. Vascular Endothelial Growth Factor-Secreting Mast Cells and Myofibroblasts: a Novel Self-Perpetuating Angiogenic Pathway in Aortic Valve Stenosis // Arteriosclerosis, Thrombosis and Vascular Biology. No. 30 (6). Р. 1220–1227. DOI 10.1161/ATVBAHA.109.198267.
36. Cote N., Mahmut A., Bosse Y. et al. Inflammation is Associated with
37. the Remodeling of Calcific Aortic Valve Disease // Inflammation. No. 36 (3). Р. 573–581. DOI 10.1007/s10753-012-9579-6.
38. Dweck M. R., Boon N. A., Newby D. E. Calcific Aortic Stenosis a Disease of the Valve and the Myocardium // Journal of the American College of Cardiology. No. 60 (19). Р. 1854–1863. DOI 10.1016/j. jacc.2012.02.093.
39. Liu X., Xu Z. Osteogenesis in Calcified Aortic Valve Disease: from
40. Histopathological Observation Towards Molecular Understanding
41. // Progress in Biophysics and Molecular Biology. No. 122 (2). Р. 156–
42. DOI 10.1016/j.pbiomolbio.2016.02.002.
43. Parisi V., Leosco D., Ferro G. et al. The Lipid Theory in the Pathogenesis of Calcific Aortic Stenosis // Nutrition, Metabolism and Cardiovascular Disease. No. 25 (6). Р. 519–525. DOI 10.1016/j. numecd.2015.02.001.
44. Capoulade R., Chan K. L., Yeang C. et al. Oxidized Phospholipids,
45. Lipoprotein(a), and Progression of Valve Stenosis // Journal of the American College of Cardiology. No. 66 (11). Р. 1236–1246. DOI 10.1016/j.jacc.2015.07.020.
46. Mahabadi A. A., Kahlert P., Kahlert H. A. et al. Comparison of Lipoprotein(a)-Levels in Patients ≥ 70 Years of Age with Versus Without Aortic Valve Stenosis (2018) // The American Journal of Cardiology. 2018. No. 122 (4). P. 645–649. DOI 10.1016/j. amjcard.2018.04.046.
47. Helske S., Otto C. M. Lipid Lowering in Aortic Stenosis: Still Some
48. Light at the End of the Tunnel? // Circulation. No. 119 (20). Р. 2653–2655. DOI 10.1161/ CIRCULATIONAHA.109.864421.
49. Osman L., Yacoub M. H., Latif N. et al. Role of Human Valve Interstitial Cells in Valve Calcification and Their Response to Atorvastatin// Circulation. 2006. No. 114. Sup. 1. P. 547–552. DOI 10.1161/ CIRCULATIONAHA.105.001115.
50. Teo K. K., Corsi D. J., Tam J. W. et al. Lipid Lowering on Progression of Mild to Moderate Aortic Stenosis: Meta-Analysis of the Randomized Placebo-Controlled Clinical Trials on 2344 Patients // Canadian Journal of Cardiology. No. 27 (6). Р. 800–808. DOI 10.1016/j.cjca.2011.03.012.
51. Yeang C., Hung M. Y., Byun Y. S. et al. Effect of Therapeutic Interventions on Oxidized Phospholipids on Apolipoprotein B100 and Lipoprotein(a) // Journal of Clinical Lipidology. No. 10 (3). 594–603. DOI 10.1016/j.jacl.2016.01.005.
52. Steiner I., Stejskal V., Zacek P. Mast Cells in Calcific Aortic Stenosis
53. // Pathology – Research and Practice. No. 214 (1). Р. 163–168. DOI
54. 1016/j.prp.2017.07.016.
55. Muller W. A. Mechanisms of Transendothelial Migration of
56. Leukocytes // Circulation Research. No. 105 (3). Р. 223–230. DOI
57. 1161/-CIRCRESAHA.109.200717.
58. Olsson M., Thyberg J., Nilsson J. Presence of Oxidized Low Density Lipoprotein in Nonrheumatic Stenotic Aortic Valves // Arteriosclerosis, Thrombosis and Vascular Biology. No. 19 (5). Р. 1218–1222.
59. Michaud M., Balardy L., Moulis G. et al. Proinflammatory Cytokines,
60. Aging, and Age-Related Diseases // Journal of the American Medical
61. Directors Association. No. 14 (12). Р. 877–882. DOI 10.1016/j.
62. jamda.2013.05.009.
63. Lin C. P., Huang P. H., Lai C. F. et al. Simvastatin Attenuates Oxidative Stress, NF-κB Activation, and Artery Calcification in LDLR−/− Mice Fed with High Fat Diet Via Down-Regulation of Tumor Necrosis
64. Factor-α and TNF Receptor 1 // Public Library of Science ONE. No. 10
65. (12). e0143686. DOI 10.1371/journal.pone.0143686.
66. Al-Aly Z., Shao J. S., Lai C. F. et al. Aortic MSx2-Wnt Calcification
67. Cascade is Regulated by TNF-Alpha-Dependent Signals in Diabetic
68. LDLR−/−Mice // Arteriosclerosis, Thrombosis and Vascular Biology.
69. No. 27 (12). Р. 2589–2596. DOI 10.1161/ ATVBAHA.107.153668.
70. Kastellanos S. S., Toumpoulis I. K., Aggeli C. et al. Time Course of C-Reactive Protein, Tumour Necrosis Factor-Alpha and Monocyte Chemoattractant Protein-1 Following the Surgical Treatment of Patients With Aortic Valve Stenosis // Hellenic Journal Cardiology. No. 48 (1). Р. 5–14.
71. Nadlonek N., Lee J. H., Reece T. B. et al. Interleukin-1 Beta Induces an Inflammatory Phenotype in Human Aortic Valve Interstitial Cells Through Nuclear Factor Kappa Beta // The Annals Thoracic Surgery. No. 96 (1). Р. 155–162. DOI 10. 1016/j.athoracsur.2013.04.013.
72. Isoda K., Matsuki T., Kondo H. et al. Deficiency of Interleukin-1 Receptor Antagonist Induces Aortic Valve Disease in BALB/c Mice. Arteriosclerosis // Thrombosis and Vascular Biology. No. 30 (4). Р. 708–715. DOI 10.1161/ATVBAHA.-109.201749.
73. Wang W. G., He Y. F., Chen Y. L. et al. Proprotein Convertase Subtilisin/ Kexin Type 9 Levels and Aortic Valve Calcification: A Prospective, Cross Sectional Study // J Int Med Res. No. 44 (4). Р. 865–874. DOI 10.1177/0300060516648030.
74. Winer A., Adams S., Mignatti P. Matrix Metalloproteinase Inhibitors
75. in Cancer Therapy: Turning Past Failures Into Future Successes // Molecular Cancer Therapeutics. No. 17 (6). Р. 1147–1155. DOI 10.1158/1535-7163.MCT-17-0646.
76. Dorman G., Cseh S., Hajdu I. et al. Matrix Metalloproteinase Inhibitors: a Critical Appraisal of Design Principles and Proposed Therapeutic Utility // Drugs. No. 70 (8). Р. 949–964. DOI 10.2165/11318390-000000000-00000.
77. Peltonen T., Ohukainen P., Ruskoaho H. et al. Targeting Vasoactive Peptides for Managing Calcific Aortic Valve Disease
78. // Annals of Internal Medicine. No. 49 (1). Р. 63–74. DOI
79. 1080/07853890.2016.1231933.
80. Karnik S. S., Unal H., Kemp J. R. et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli // Pharmacological Reviews. No. 67. Р. 754–819. DOI 10.1124/pr.114.010454.
81. Helske S., Lindstedt K. A., Laine M. et al. Induction of Local Angiotensin II Producing Systems in Stenotic Aortic Valves // Journal of the American College of Cardiology. No. 44 (9). Р. 1859–1866. DOI 10.1016/j.jacc.2004.07.054.
82. Bull S., Loudon M., Francis J. M. et al. A Prospective, Double-Blind,
83. Randomized Controlled Trial of the Angiotensin-Converting Enzyme Inhibitor Ramipril in Aortic Stenosis (RIAS trial) // European Heart Journal – Cardiovascular Imaging. No. 16 (8). Р. 834–841. DOI 10.1093/ehjci/jev043.
84. Nadir M. A., Wei L., Elder D. H. et al. Impact of Renin-Angiotensin
85. System Blockade Therapy on Outcome in Aortic Stenosis // J Journal
86. of the American College of Cardiology. No. 58 (6). Р. 570–576. DOI
87. 1016/j.jacc.2011.01.063.
88. Helske-Suihko S., Laine M., Lommi J. et al. Is Blockade of the Renin-Angiotensin System Able to Reverse the Structural and Functional Remodeling of the Left Ventricle in Severe Aortic Stenosis? // Journal of Cardiovascular Pharmacology. No. 65 (3). Р. 233–240. DOI
89. 1097/FJC.0000000000000182.
Рецензия
Для цитирования:
Чугунов В.В., Молчанов А.Н., Наумова Л.А. ФАКТОРЫ РИСКА И ПАТОГЕНЕЗ РАЗВИТИЯ ДЕГЕНЕРАТИВНОГО АОРТАЛЬНОГО ПОРОКА. Вестник СурГУ. Медицина. 2020;(2 (44)):73-79. https://doi.org/10.34822/2304-9448-2020-2-73-79
For citation:
Chugunov V.V., Molchanov A.N., Naumova L.A. RISK FACTORS AND PATHOGENESIS OF DEGENERATIVE AORTIC DISEASES. Vestnik SurGU. Meditsina. 2020;(2 (44)):73-79. (In Russ.) https://doi.org/10.34822/2304-9448-2020-2-73-79