Научная статья УДК 616.72-002.78-073.756.8 https://doi.org/10.35266/2949-3447-2025-1-6

ДВУХЭНЕРГЕТИЧЕСКАЯ КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ В ДИАГНОСТИКЕ ПОДАГРЫ

Тхе Ван Ким¹™, Владимир Дмитриевич Удодов¹, Дарья Александровна Погоченкова², Екатерина Игоревна Фёдорова¹, Илья Юрьевич Дегтярев¹, Артем Олегович Балабенко¹, Максим Александрович Зоркальцев¹, Вера Дмитриевна Завадовская¹

¹Сибирский государственный медицинский университет Минздрава России, Томск, Россия

²Медицинский центр «Профессор», Сибирский государственный медицинский университет Минздрава России, Томск, Россия

Аннотация. Цель данного исследования – изучение диагностической эффективности двухэнергетической компьютерной томографии в диагностике подагры, в том числе в различные сроки заболевания. В исследование включен 91 пациент с подозрением на подагру, которым было проведено сканирование стоп с захватом голеностопных областей. Двухэнергетическая компьютерная томография показала достаточно высокие показатели чувствительности, специфичности и точности (88,5, 86,6 и 87,9 % соответственно). В зависимости от продолжительности заболевания двухэнергетичская компьютерная томография показала тенденцию к снижению чувствительности в дебюте заболевания (73, 6 %), когда при более продолжительном сроке заболевания чувствительность была высокой (95 %).

Ключевые слова: подагрический артрит, тофус, кристалл моноурата натрия, диагностика подагры, двухэнергетическая компьютерная томография

Шифр специальности: 3.1.25. Лучевая диагностика.

Для цитирования: Ким Т. В., Удодов В. Д., Погоченкова Д. А., Фёдорова Е. И., Дегтярев И. Ю., Балабенко А. О., Зоркальцев М. А., Завадовская В. Д. Двухэнергетическая компьютерная томография в диагностике подагры // Вестник СурГУ. Медицина. 2025. Т. 18, № 1. С. 54–60. https://doi.org/10.35266/2949-3447-2025-1-6.

Original article

DUAL-ENERGY COMPUTED TOMOGRAPHY IN DIAGNOSIS OF GOUT

Tkhe V. Kim¹™, Vladimir D. Udodov¹, Darya A. Pogochenkova², Ekaterina I. Fedorova¹, Ilya Yu. Degtyarev¹, Artem O. Balabenko¹, Maksim A. Zorkaltsev¹, Vera D. Zavadovskaya¹

¹Siberia State Medical University, Tomsk, Russia

²Medical Center "Professor" of Siberia State Medical University, Tomsk, Russia

Abstract. The aim of this study is to investigate the diagnostic efficiency of dual-energy computed tomography in the diagnosis of gout, including different stages of the disease. The study includs 91 patients with suspected gout, who underwent feet scanning including ankle areas. Dual-energy computed tomography showed high sensitivity, specificity and accuracy (88.5%, 86.6% and 87.9%, respectively). Depending on the course of the disease, dual-energy computed tomography shows a tendency to decrease sensitivity at the onset of the disease (73.6%), whereas at a longer duration of the disease, the sensitivity is high (95%).

Keywords: gouty arthritis, tophus, monosodium urate crystal, gout diagnosis, dual-energy computed tomography

Code: 3.1.25. Radiation Therapy.

For citation: Kim T. V., Udodov V. D., Pogochenkova D. A., Fedorova E. I., Degtyarev I. Yu., Balabenko A. O., Zorkaltsev M. A., Zavadovskaya V. D. Dual-energy computed tomography in diagnosis of gout. *Vestnik SurGU. Meditsina*. 2025;18(1):54–60. https://doi.org/10.35266/2949-3447-2025-1-6.

ВВЕДЕНИЕ

Подагра является наиболее распространенной кристаллической артропатией, вызванной нарушением пуринового обмена, характеризующейся отложением кристаллов моноурата натрия (МУН) в суставах и околосуставных мягких тканях. Наиболее частым

поражаемым суставом является первый плюснефаланговый сустав [1].

Депонирование кристаллов МУН и большой объем подагрических тофусов приводят к деструкции суставных и околосуставных тканей, при этом подагра часто ассоциируется с почечной дисфункцией, сер-

дечно-сосудистыми и метаболическими заболеваниями, а также с повышенным риском инвалидизации и смертности [2]. Своевременная диагностика и лечение играют решающее значение для благоприятного прогноза у пациентов с подагрой.

Золотым стандартом диагностики подагры является выявление кристаллов МУН в синовиальной жидкости или в тофусе [3]. Однако артроцентез имеет ограничение в широкой клинической практике в связи с инвазивностью манипуляции, риском осложнений, таких как кровотечение и инфицирование, а также невозможностью аспирации необходимого количества синовиальной жидкости [4]. При невозможности исследования синовиальной жидкости на предмет наличия в ней кристаллов МУН, диагноз устанавливается на основании совокупности данных клинических, лабораторных и инструментальных, в том числе лучевых исследований [3].

Лучевые методы диагностики вносят существенный вклад в диагностику подагрического артрита, однако ни одна из современных лучевых модальностей не лишена определенных ограничений. Рентгенография, являясь первоначальным стандартизированным методом лучевой диагностики подагрического артрита, имеет низкую чувствительность в выявлении эрозивных изменений в первые 5-6 лет от дебюта заболевания [5]. Ультразвуковое исследование (УЗИ), демонстрируя, преимущественно, по данным зарубежной литературы высокую точность в диагностике кристаллических артропатий, имеет ограниченные возможности в оценке состояния таких анатомических структур, как кости кисти и запястья, а также в идентификации внутрикостных тофусов [6].

Магнитно-резонансная томография (MPT), рутинная компьютерная томография (КТ) и радионуклидные методы исследования обладают широкой востребованностью в ревматологии и способствуют постановке правильного диагноза, тем не менее данные методы в достаточно большом количестве наблюдений обладают низкой специфичностью [7–11].

Двухэнергетическая компьютерная томография (ДЭКТ) обладает более высокой диагностической

точностью, чем вышеперечисленные методы диагностики [12]. Основным преимуществом ДЭКТ является определение химического состава того или иного субстрата в рамках кристаллических артропатий, путем сканирования на двух (низкий и высокий) энергетических уровнях, а также количественная оценка данного субстрата. Благодаря этому ДЭКТ рассматривается как неинвазивный и альтернативный метод обнаружения кристаллов МУН [13].

Однако сегодня в публикациях имеются разноречивые мнения по поводу эффективности метода, включая его низкую чувствительность (от 38,1 до 63 %), обусловленную как малой выборкой в отдельных статьях, так и небольшим стажем (менее 6 месяцев) заболевания у определенного количества больных [14, 15].

Целью данного научного исследования является оценка диагностической точности двухэнергетической компьютерной томографии (ДЭКТ) для диагностики подагры, в том числе в различные сроки заболевания.

МАТЕРИАЛЫ И МЕТОДЫ

Всего в период с 2021 по 2024 г. был исследован 91 пациент (59 мужчин, 32 женщины) в возрасте от 31 до 85 лет с подозрением на подагру.

Критерии включения были: возраст от 18 до 85 лет, болевой синдром и/или отек мягких тканей суставов; признаки воспаления по данным биохимического анализа крови, информированное согласие пациентов на участие в данном исследовании. Критериями исключения были травмы и хирургические вмешательства в области зоны интереса, а также отсутствие информированного согласия на проведение данного исследования.

Тема исследования утверждена этическим комитетом ФГБОУ ВО СибГМУ Минздрава России.

Характеристика пациентов, включенных в исследование, представлена в табл. 1.

Среди 91 больного диагноз подагры был установлен 61 пациенту на основании критериев клинических рекомендаций, включающих: наличие кристаллов МУН в синовиальной жидкости, подтвержденные микроскопией; наличие 6 и более признаков,

Таблица 1

плинико-лаоораторная и демографическая характеристика пациентов				
Количество пациентов (<i>n</i>)		Bcero n = 91		
Средний возраст		57 лет (<u>+</u> 27,6 лет)		
Средний стаж заболевания		12 лет (от менее 1 года до 29 лет)		
Болевой синдром и/или отек мягких тканей		n = 91		
Данные б/х анализа крови	Средний уровень мочевой кислоты (МК) в крови (ммоль/л)	369 (от 112 до 665)		
	С-реактивный белок (мг/л)	19,8 (от 0,3 до 149,5)		
Зона интереса	Стопы	n = 39		
	Область голеностопного сустава	n = 21		
	Колени	n = 13		
	Кисти	n = 27		
	Локти	n = 12		

Примечание: составлено авторами.

входящих в классификационные критерии острого подагрического артрита, разработанные ACR и одои бренные для использования в клинической практике BO3 [3].

Поляризационная микроскопия синовиальной жидкости была выполнена у 23 пациентов, которая выявила 14 положительных результатов и 9 отрицательных (табл. 2).

Таблица 2

Критерии диагноза подагры

Критерий постановки диагноза	Количество пациентов (n)	
Данные микроскопии синовиальной жидкости	14	
6 или более критериев классификации острого подагрического артрита: более одной атаки острого ар-		
трита в анамнезе; воспаление сустава достигает максимума в 1-й день болезни; моноартрит; гиперемия	47	
кожи над пораженным суставом; припухание и боль в первом плюснефаланговом суставе; одностороннее		
поражение первого плюснефалангового сустава; одностороннее поражение суставов стопы; подозрение		
на тофусы; гиперурикеми; асимметричный отек суставов; субкортикальные кисты без эрозий (рентгено-		
графия); отрицательные результаты при посеве синовиальной жидкости		
Отсутствие подагры	30	

Примечание: составлено авторами.

У 30 пациентов характер болевого синдрома, лабораторных данных не соответствовал критериям клинических рекомендаций для установления диагноза подагры, а причиной болевого синдрома был остеоартроз (n=17), ревматоидный артрит (n=9) и псориатический артрит (n=4).

ДЭКТ стоп с захватом голеностопных суставов выполнена 91 больному. Сканирование выполнялось с использованием ДЭКТ-сканера (система комбинированной однофотонной эмиссионной и рентгеновской компьютерной томографии – Siemens Symbia Intevo Bold). Параметры сканирования 80/130 кВ со средней дозой рентгенологического облучения до 0,03 мЗв. Постпроцессорная обработка данных выполнялась с использованием специального программного обеспечения для автоматизированной оценки объема кристаллов МУН Siemens Syngo.via для двухэнергетического режима. Многоплоскостные цветные изображения были реконструированы в объемные 3D-изображения, что позволило визуально отобразить отложение кристаллов МУН, обозначенных зеленым цветом.

Результаты ДЭКТ оценивались в плюснефаланговых суставах, в околосуставных областях стоп, а также в околосуставных областях голеностопного сустава, так как наиболее распространенными локализациями депонирования кристаллов МУН являются 1

плюснефаланговые суставы и ахиллово сухожилие, также не исключались и другие области стоп.

Оценка ДЭКТ-исследований проводилась двумя врачами-рентгенологами, один из которых имел стаж работы не более 3 лет, а другой – не более 19 лет.

При анализе результатов ДЭКТ всех больных, уровень согласия между врачами-рентгенологами был достаточно высок: среди 91 наблюдений только в 4 были расхождения в результатах интерпретации, и окончательное решение было вынесено в пользу более опытного врача-рентгенолога.

Статистика. Для оценки диагностической эффективности ДЭКТ были выявлены чувствительность (Se), специфичность (Sp) и точность метода с помощью формул: a / (a + b), c / (c + d), (a + c)/(a + b + c + d) соответственно, где a – истинно положительный результат (ЛП), b – ложноотрицательный результат (ЛО), c – истинно отрицательный результат (ЛО), d – ложно-положительный результат (ЛП).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По результатам исследования 91 пациента с подозрением на подагру диагноз был установлен 61 больному с помощью критериев клинических рекомендаций, а 30 больным диагноз был исключен. Результаты исследования пациентов представлены на рис. 1.

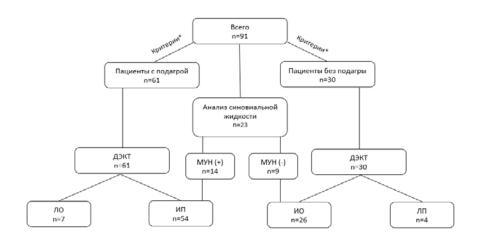


Рис. 1. Результаты исследования пациентов

По результатам ДЭКТ у 91 пациента, исследованного с подозрением на подагру, было получено 54 ИП, 26 ИО, 4 ЛП и 7 ЛО.

В качестве ИП и ИО результатов расценивалось наличие или отсутствие кристаллов МУН (в виде зеленных пикселей) в симптоматических суставах, установленных на основании критериев клинических рекомендаций; в сухожилиях зон интереса, а также наличие или отсутствие кристаллов МУН в несимптоматических зонах, но со значением объема более 0,02 см³ при ИП результате и отсутствии объема при ИО результате (рис. 2).

ЛП результатами считались артефакты зоны ногтевого ложа пальцев стоп, бессимптомные суставы, симптоматические суставы и околосуставные области со значением объема выявленных картированных структур менее 0,02 см³, которые выглядели как линейные плоскостные структуры, но без обнаружения кристаллов МУН в синовиальной жидкости (рис. 3).

ЛО результатами считались наблюдения, которые по данным ДЭКТ не показали наличие кристаллов МУН в симптоматических суставах или околосуставных областях, но по данным микроскопии синовиальной жидкости кристаллы МУН были обнаружены.

Таким образом, чувствительность и специфичность ДЭКТ составили 88,5 и 86,6 % соответственно при точности 87,9 %.

Пациенты с подтвержденным диагнозом пподагры были разделены на 3 группы в зависимости от стажа заболевания: первая группа – со стажем до 5 лет, вторая группа – со стажем от 6 до 10 лет и третья группа – со стажем от 11 лет и более.

Результаты диагностической эффективности ДЭКТ в зависимости от стажа заболевания указаны в табл. 3.

Данные табл. 3 наглядно показывают нарастание количества ИП результатов с соответствующим нарастанием показателей чувствительности в зависимости от длительности подагры.

Обсуждение. В настоящее время, несмотря на успехи в диагностике подагры, сохраняются проблемы в выявлении подагрического артрита. Это связано с неоднозначными показателями эффективности методов лучевой диагностики – как рутинной рентгенографии, так и томографических методов исследования, а также с неопределенными клинико-лабораторными данными. Особую проблему представляет диагностика подагры по данным лучевой диагностики у лиц в дебюте заболевания [16, 17].

В настоящем исследовании была получена достаточно высокая диагностическая эффективность ДЭКТ, согласующаяся с публикуемыми данными [18, 19].

На показатели чувствительности метода в общей группе пациентов (88,5 %) повлияли ЛО результаты

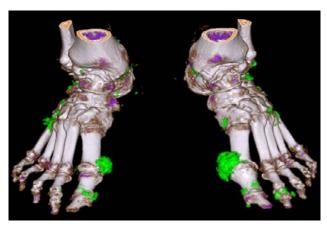


Рис. 2. 3D-реконструкиця ДЭКТ-исследования стоп (с охватом голеностопных суставов) передне-верхней поверхности с множественными кристаллами МУН, закодированными зеленым цветом (ИП результат)

Примечание: составлено авторами.

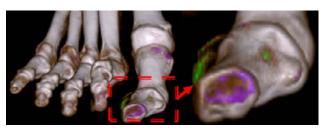


Рис. 3. 3D-рекнострукиця ДЭКТ-исследования правой стопы пациента с ЛП результатом, обусловленный артефактом в области ногтевого ложа в дистальной фаланге 1-го пальца Примечание: составлено авторами.

(n=7), которые были обусловлены короткой продолжительностью болезни, а также, вероятно, маленькими размерами тофусов, вследствие чего объем кристаллов МУН был недостаточным для визуализации с помощью ДЭКТ.

На показатели специфичности в общей группе пациентов оказали влияние 4 ЛП результата (4,4 %), которые были обусловлены артефактами в виде уратоподобных пикселей в зоне ногтевого ложа у одного из пациентов, у остальных 3 пациентов уратоподобные пиксели были выявлены в суставном хряще у пациентов с остеоартрозом.

При оценке информативности метода среди 61 пациента с подагрой в зависимости от продолжительности заболевания было выявлено повышение чувствительности метода при ее увеличении от 73,6 до 95 %, так как при продолжительном стаже была выявлена тенденция к уменьшению количества ЛО результатов от 5 до 1.

Таблица 3 Диагностическая эффективность ДЭКТ в зависимости от стажа заболевания

	Результаты группы со стажем до 5 лет	Результаты группы со стажем от 6 до 10 лет	Результаты группы со стажем от 11 лет и более
Кол-во пациентов			
(n)	n = 19	n = 22	n = 20
ИП	n = 14	n = 21	n = 19
ЛО	n = 5	n = 1	n = 1
Se (%)	73,6%	95,4 %	95 %

у больных подагрой

Примечание: составлено авторами.

Полученные результаты о влиянии стажа заболевания на показатели чувствительности метода – преобладание ЛО результатов в дебюте заболевания согласуются с данными публикаций последних лет [18–20]. В то же время нельзя исключать возможность трансформации ЛО результата на основании малого объема кристалла МУН в ИП в результате увеличения стажа болезни и отсутствии адекватной уратоснижающей терапии.

Кроме того, адекватная оценка результатов ДЭКТ у пациентов с подозрением на подагру требует понимания вариантов интерпретации цветового картирования, обусловленного как истинным наличием кристаллов МУН, так и возможностью ЛП результатов при наличии артефактов в том числе и у пациентов с ОА [4].

СПИСОК ИСТОЧНИКОВ

- . Bursill D., Taylor W. J., Terkeltaub R. et al. Gout, Hyperuricemia, and Crystal-Associated Disease Network Consensus Statement Regarding Labels and Definitions for Disease Elements in Gout // Arthritis Care & Research. 2019. Vol. 71, no. 3. P. 427–434. https:// doi.org/10.1002/acr.23607.
- Marty-Ané A., Norberciak L., Andrès M. et al. Crystal deposition measured with dual-energy computed tomography: association with mortality and cardiovascular risks in gout // Rheumatology. 2021. Vol. 60, no. 10. P. 4855–4860. https://doi.org/10.1093/rheumatology/keaa920.
- Подагра: клинические рекомендации. 2018. URL: https://library.mededtech.ru/rest/documents/cr_174/?ysclid=m7x-9rl1d73712497237 (дата обращения: 25.02.2025).
- Zhong H., Wang M., Zhang H. et al. Gout of feet and ankles in different stages: The potentiality of a new semiquantitative DECT scoring system in monitoring urate deposition // Medicine. 2023. Vol. 102, no. 3. https://doi.org/10.1097/MD.0000000000032722.
- Davies J., Riede P., van Langevelde K. et al. Recent developments in advanced imaging in gout // Therapeutic Advances in Musculoskeletal Disease. 2019. Vol. 11. https://doi.org/10.1177/1759720X19844429.
- Sivera F., Andres M., Dalbeth N. A glance into the future of gout // Therapeutic Advances in Musculoskeletal Disease. 2022. Vol. 14. https://doi.org/10.1177/1759720X221114098.
- Shen G., Su M., Liu B. et al. A Case of tophaceous pseudogout on 18F-FDG PET/CT imaging // Clinical Nuclear Medicine. 2019. Vol. 44, no. 2. P. e98–e100. https://doi.org/10.1097/ RLU.0000000000002308.
- 8. Birk A., Wörtler K., Mogler C. et al. Tophaceous gout as a differential diagnosis of preauricular tumor // HNO. 2023. Vol. 71. P. 114–117. https://doi.org/10.1007/s00106-022-01253-y.
- Matos T. D., Teixeira K. O., Fleury R. B. C. et al. Cervical myelopathy secondary to gout: Case report. Revista Brasileira de Ortopedia. 2020;55(6):796–799. https://doi.org/10.1055/s-0040-1708514.
- 10. Jiao B., Liu S., Zhuang Y. et al. Lumbosacral paravertebral tophaceous gout on an adolescent mimicking malignant neoplasm in ¹⁸F-FDG PET/CT // Clinical Nuclear Medicine. 2024. Vol. 49, no. 1. P. 91–92. https://doi.org/10.1097/RLU.00000000000004962.
- Emsen B., Fitoussi A., Chalaye J. et al. FDG PET/CT of cervical gout with spinal cord compression // Clinical Nuclear Medicine. 2020. Vol. 45, no. 1. P. e29–e31. https://doi.org/10.1097/ RLU.0000000000002772.
- 12. Lee Y. H., Song G. G. Diagnostic accuracy of dual-energy computed tomography in patients with gout: A meta-analysis // Semi-

ЗАКЛЮЧЕНИЕ

ДЭКТ обладает высокими показателями диагностической эффективности в выявлени кристаллов МУН у пациентов с подозрением на подагру. При этом нельзя забывать о том, что на диагностическую эффективность влияет продолжительность заболевания. Большая длительность заболевания приводит к наименьшему количеству сомнительных результатов, в то время как при меньшем стаже заболевании снижается чувствительность метода за счет наличия ЛО результатов.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest. The authors declare no conflict of interest.

REFERENCES

- Bursill D., Taylor W. J., Terkeltaub R. et al. Gout, Hyperuricemia, and Crystal-Associated Disease Network Consensus Statement Regarding Labels and Definitions for Disease Elements in Gout. Arthritis Care & Research. 2019;71(3):427–434. https://doi. org/10.1002/acr.23607.
- Marty-Ané A., Norberciak L., Andrès M. et al. Crystal deposition measured with dual-energy computed tomography: association with mortality and cardiovascular risks in gout. *Rheumatology*. 2021;60(10):4855–4860. https://doi.org/10.1093/rheumatology/ keaa920.
- Podagra: Clinical recommendations. 2018. URL: https:// library.mededtech.ru/rest/documents/cr_174/?ysclid=m7x9rl 1d73712497237 (accessed: 25.02.2025). (In Russ.).
- Zhong H., Wang M., Zhang H. et al. Gout of feet and ankles in different stages: The potentiality of a new semiquantitative DECT scoring system in monitoring urate deposition. *Medicine*. 2023;102(3). https://doi.org/10.1097/MD.0000000000032722.
- Davies J., Riede P., van Langevelde K. et al. Recent developments in advanced imaging in gout. *Therapeutic Advances in Musculoskeletal Disease*. 2019;11. https://doi.org/10.1177/1759720X19844429.
- Sivera F., Andres M., Dalbeth N. A glance into the future of gout. Therapeutic Advances in Musculoskeletal Disease. 2022;14. https://doi.org/10.1177/1759720X221114098.
- Shen G., Su M., Liu B. et al. A Case of tophaceous pseudogout on 18F-FDG PET/CT imaging. Clinical Nuclear Medicine. 2019;44(2):e98-e100. https://doi.org/10.1097/RLU.00000000000002308.
- Birk A., Wörtler K., Mogler C. et al. Tophaceous gout as a differential diagnosis of preauricular tumor. HNO. 2023;71:114–117. https://doi.org/10.1007/s00106-022-01253-y. (In German).
- Matos T. D., Teixeira K. O., Fleury R. B. C. et al. Cervical myelopathy secondary to gout: Case report. Revista Brasileira de Ortopedia. 2020;55(6):796–799. https://doi.org/10.1055/s-0040-1708514.
- Jiao B., Liu S., Zhuang Y. et al. Lumbosacral paravertebral tophaceous gout on an adolescent mimicking malignant neoplasm in ¹⁸F-FDG PET/CT. *Clinical Nuclear Medicine*. 2024;49(1):91–92. https://doi.org/10.1097/RLU.000000000004962.
- Emsen B., Fitoussi A., Chalaye J. et al. FDG PET/CT of cervical gout with spinal cord compression. *Clinical Nuclear Medicine*. 2020;45(1):e29–e31. https://doi.org/10.1097/RLU.0000000000002772.
- Lee Y. H., Song G. G. Diagnostic accuracy of dual-energy computed tomography in patients with gout: A meta-analysis. Semi-

- nars in Arthritis and Rheumatism. 2017. Vol. 47, no. 1. P. 95–101. https://doi.org/10.1016/j.semarthrit.2017.03.002.
- Carotti M., Salaffi F., Filippucci E. et al. Clinical utility of Dual Energy Computed Tomography in gout: Current concepts and applications // Acta Bio-medica: Atenei Parmensis. 2020. Vol. 91, no. 8-S. P. 116–124. https://doi.org/10.23750/abm.v91i8-S.9942.
- 14. Kravchenko D., Karakostas P., Kuetting D. et al. The role of dual energy computed tomography in the differentiation of acute gout flares and acute calcium pyrophosphate crystal arthritis // Clinical Rheumatology. 2022. Vol. 41. P. 223–233. https://doi.org/10.1007/s10067-021-05949-4.
- Shang J., Li X.-H., Lu S.-Q. et al. Gout of feet and ankles in different disease durations: diagnostic value of single-source DECT and evaluation of urate deposition with a novel semi-quantitative DECT scoring system // Advances in Rheumatology. 2021. Vol. 61. https://doi.org/10.1186/s42358-021-00194-4.
- Clebak K.T., Morrison A., Croad J. R. Gout: Rapid evidence review // American Family Physician. 2020. Vol. 102, no. 9. P. 533–538.
- Reijnierse M., Schwabl C., Klauser A. Imaging of crystal disorders: Calcium pyrophosphate dihydrate crystal deposition disease, calcium hydroxyapatite crystal deposition disease and gout pathophysiology, imaging, and diagnosis // Radiologic Clinics of North America. 2022. Vol. 60, no. 4. P. 641–656. https://doi.org/10.1016/j.rcl.2022.03.007.
- 18. Shang J., Zhou L.-P., Wang H. et al. Diagnostic performance of dual-energy CT versus ultrasonography in gout: A meta-analysis // Academic Radiology. 2022. Vol. 29, no. 1. P. 56–68. https://doi.org/10.1016/j.acra.2020.08.030.
- 19. Baffour F. I., Ferrero A., Aird G. A. et al. Evolving role of dual-energy CT in the clinical workup of gout: A retrospective study // American Journal of Roentgenology. 2022. Vol. 218, no. 6. P. 1041–1050. https://doi.org/10.2214/AJR.21.27139.
- Abdellatif W., Ding J., Khorshed D. et al. Unravelling the mysteries of gout by multimodality imaging // Seminars in Arthritis and Rheumatism. 2020. Vol. 50, no. 3S. P. S17–S23. https://doi.org/10.1016/j.semarthrit.2020.04.009.

- nars in Arthritis and Rheumatism. 2017;47(1):95–101. https://doi.org/10.1016/j.semarthrit.2017.03.002.
- 13. Carotti M., Salaffi F., Filippucci E. et al. Clinical utility of Dual Energy Computed Tomography in gout: current concepts and applications. *Acta Bio-medica: Atenei Parmensis.* 2020;91(8-S):116–124. https://doi.org/10.23750/abm.v91i8-S.9942.
- 14. Kravchenko D., Karakostas P., Kuetting D. et al. The role of dual energy computed tomography in the differentiation of acute gout flares and acute calcium pyrophosphate crystal arthritis. *Clinical Rheumatology*. 2022;41:223–233. https://doi.org/10.1007/s10067-021-05949-4.
- Shang J., Li X.-H., Lu S.-Q. et al. Gout of feet and ankles in different disease durations: diagnostic value of single-source DECT and evaluation of urate deposition with a novel semi-quantitative DECT scoring system. *Advances in Rheumatology*. 2021;61. https://doi.org/10.1186/s42358-021-00194-4.
- Clebak K. T., Morrison A., Croad J. R. Gout: Rapid evidence review. *American Family Physician*. 2020;102(9):533–538.
- Reijnierse M., Schwabl C., Klauser A. Imaging of crystal disorders: Calcium pyrophosphate dihydrate crystal deposition disease, calcium hydroxyapatite crystal deposition disease and gout pathophysiology, imaging, and diagnosis. *Radiologic Clinics of North America*. 2022;60(4):641–656. https://doi.org/10.1016/j. rcl.2022.03.007.
- Shang J., Zhou L.-P., Wang H. et al. Diagnostic performance of dual-energy CT versus ultrasonography in gout: A meta-analysis. *Academic Radiology*. 2022;29(1):56–68. https://doi.org/10.1016/j. acra.2020.08.030.
- Baffour F. I., Ferrero A., Aird G. A. et al. Evolving role of dual-energy CT in the clinical workup of gout: A retrospective study. *American Journal of Roentgenology*. 2022;218(6):1041–1050. https://doi.org/10.2214/AJR.21.27139.
- 20. Abdellatif W., Ding J., Khorshed D. et al. Unravelling the mysteries of gout by multimodality imaging. *Seminars in Arthritis and Rheumatism*. 2020;50(3S):S17–S23. https://doi.org/10.1016/j.semarthrit.2020.04.009.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Т. В. Ким – аспирант;

https://orcid.org/0009-0002-9766-6986, pavel.kim.08@mail.ru[™]

В. Д. Удодов – кандидат медицинских наук, доцент;

https://orcid.org/0000-0002-1321-7861, udodov.vd@ssmu.ru

Д. А. Погоченкова – кандидат медицинских наук, заведующий отделением;

https://orcid.org/0000-0002-5903-3662, azarova_d_a@mail.ru

Е. И. Фёдорова – ассистент;

https://orcid.org/0009-0000-1044-0630, fedorova.ei@ssmu.ru

И. Ю. Дегтярев – ассистент;

https://orcid.org/0000-0002-8812-4168, ilya.degtyarev.4201@mail.ru

А. О. Балабенко – аспирант;

https://orcid.org/0009-0001-6206-6772, balabenko.96@yandex.ru

М. А. Зоркальцев – доктор медицинских наук, доцент;

https://orcid.org/0000-0003-0025-2147, zorkaltsev@mail.ru

В. Д. Завадовская – доктор медицинских наук, профессор, исполняющий обязанности заведующего; https://orcid.org/0000-0001-6231-7650, wdzav@mail.ru

ABOUT THE AUTHORS

T. V. Kim – Postgraduate;

https://orcid.org/0009-0002-9766-6986, pavel.kim.08@mail.ru[™]

V. D. Udodov – Candidate of Sciences (Medicine), Docent;

https://orcid.org/0000-0002-1321-7861, udodov.vd@ssmu.ru

D. A. Pogochenkova – Candidate of Sciences (Medicine), Head of the Department;

https://orcid.org/0000-0002-5903-3662, azarova_d_a@mail.ru

E. I. Fedorova – Assistant Professor;

https://orcid.org/0009-0000-1044-0630, fedorova.ei@ssmu.ru

I. Yu. Degtyarev – Assistant Professor;

https://orcid.org/0000-0002-8812-4168, ilya.degtyarev.4201@mail.ru

A. O. Balabenko - Postgraduate;

https://orcid.org/0009-0001-6206-6772, balabenko.96@yandex.ru

M. A. Zorkaltsev – Doctor of Sciences (Medicine), Docent;

https://orcid.org/0000-0003-0025-2147, zorkaltsev@mail.ru

V. D. Zavadovskaya – Doctor of Sciences (Medicine), Professor, Deputy Head of the Department;

https://orcid.org/0000-0001-6231-7650, wdzav@mail.ru